GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Spektrum der Wissenschaft, Heidelberg : Spektrum-der-Wiss.-Verl.-Ges., 1978, (1994), 10, Seite 70-77, 0170-2971
    In: year:1994
    In: number:10
    In: pages:70-77
    Materialart: Artikel
    Seiten: Ill
    ISSN: 0170-2971
    Sprache: Unbestimmte Sprache
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Schlagwort(e): Dinoflagellates Congresses ; Paralytic shellfish poisoning Congresses ; Red tide Congresses ; Dinoflagellates congresses ; Marine Toxins congresses ; Shellfish poisoning ; congresses ; Konferenzschrift 1985 ; Dinoflagellaten ; Toxizität
    Materialart: Buch
    Seiten: XVIII, 561 S , Ill., graph. Darst
    ISBN: 0444010300
    DDC: 589.4/30469
    RVK:
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Schlagwort(e): Aufsatzsammlung
    Materialart: Buch
    Seiten: S. 159 - 321 , Ill., graph. Darst
    Serie: Deep sea research 57.2010,3/4
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Hattenrath-Lehmann, Theresa K; Smith, Juliette L; Wallace, Ryan B; Merlo, Lucas R; Koch, Florian; Mittelsdorf, Heidi; Goleski, Jennifer A; Anderson, Donald M; Gobler, Christopher J (2015): The effects of elevated CO2 on the growth and toxicity of field populations and cultures of the saxitoxin-producing dinoflagellate, Alexandrium fundyense. Limnology and Oceanography, 60(1), 198-214, https://doi.org/10.1002/lno.10012
    Publikationsdatum: 2024-03-15
    Beschreibung: The effects of coastal acidification on the growth and toxicity of the saxitoxin-producing dinoflagellate Alexandrium fundyense were examined in culture and ecosystem studies. In culture experiments, Alexandrium strains isolated from Northport Bay, New York, and the Bay of Fundy, Canada, grew significantly faster (16-190%; p 〈 0.05) when exposed to elevated levels of PCO2 ( 90-190 Pa=900-1900 µatm) compared to lower levels ( 40 Pa=400 µatm). Exposure to higher levels of PCO2 also resulted in significant increases (71-81%) in total cellular toxicity (fg saxitoxin equivalents/cell) in the Northport Bay strain, while no changes in toxicity were detected in the Bay of Fundy strain. The positive relationship between PCO2 enrichment and elevated growth was reproducible in natural populations from New York waters. Alexandrium densities were significantly and consistently enhanced when natural populations were incubated at 150 Pa PCO2 compared to 39 Pa. During natural Alexandrium blooms in Northport Bay, PCO2 concentrations increased over the course of a bloom to more than 170 Pa and were highest in regions with the greatest Alexandrium abundances, suggesting Alexandrium may further exacerbate acidification and/or be especially adapted to these acidi-fied conditions. The co-occurrence of Alexandrium blooms and elevated PCO2 represents a previously unrecognized, compounding environmental threat to coastal ecosystems. The ability of elevated PCO2 to enhance the growth and toxicity of Alexandrium indicates that acidification promoted by eutrophication or climate change can intensify these, and perhaps other, harmful algal blooms.
    Schlagwort(e): Alexandrium fundyense; Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell density; Chromista; Coulometric titration; Date; Event label; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Immunology/Self-protection; Incubation duration; Infrared spectrometric; Laboratory experiment; Laboratory strains; Myzozoa; North Atlantic; Northport_Harbor; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Phosphate; Phytoplankton; Potentiometric; Salinity; Silicate; Single species; Species; Strain; Temperature, water; Toxicity, cellular; Treatment
    Materialart: Dataset
    Format: text/tab-separated-values, 2149 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2024-03-11
    Schlagwort(e): Abundance per volume; Atlantic, Vineyard Sound; Biomass as carbon per volume; Carbon per cell; Cell biovolume; Clearance rate per individual; Dinoflagellata, cell biovolume; Dinoflagellata, growth rate; Dinoflagellates; Equivalent spherical diameter; Event label; Feeding mode; Grazing rate per individual; Latitude of event; Longitude of event; Net; NET; Taxon/taxa; Treatment: light:dark cycle; Treatment: light intensity; Treatment: temperature; Uniform resource locator/link to reference; VS_MS_1993
    Materialart: Dataset
    Format: text/tab-separated-values, 131 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019-07-16
    Beschreibung: The Alexandrium tamarense species complex is one of the most studied marine dinoflagellate groups due to its ecological, toxicological and economic importance. Several members of this complex produce saxitoxin and its congeners - potent neurotoxins that cause paralytic shellfish poisoning. Isolates from this complex are assigned to A. tamarense, A. fundyense, or A. catenella based on two main morphological characters: the ability to form chains and the presence/absence of a ventral pore between Plates 1′ and 4′. However, studies have shown that these characters are not consistent and/or distinctive. Further, phylogenies based on multiple regions in the rDNA operon indicate that the sequences from morphologically indistinguishable isolates partition into five clades. These clades were initially named based on their presumed geographic distribution, but recently were renamed as Groups I-V following the discovery of sympatry among some groups. In this study we present data on morphology, ITS/5.8S genetic distances, ITS2 compensatory base changes, mating incompatibilities, toxicity, the sxtA toxin synthesis gene, and rDNA phylogenies. All results were consistent with each group representing a distinct cryptic species. Accordingly, the groups were assigned species names as follows: Group I, A. fundyense; Group II, A. mediterraneum; Group III, A. tamarense; Group IV, A. pacificum; Group V, A. australiense.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    Annual Reviews
    In:  EPIC3Annu. Rev. Mar. Sci., Annual Reviews, 4, pp. 143-176
    Publikationsdatum: 2019-07-17
    Beschreibung: The public health, tourism, fisheries, and ecosystem impacts from harmful algal blooms (HABs) have all increased over the past few decades. This has led to heightened scientific and regulatory attention, and the development of many new technologies and approaches for research and management. This, in turn, is leading to significant paradigm shifts with regard to, e.g.,our interpretation of the phytoplankton species concept (strain variation), the dogma of their apparent cosmopolitanism, the role of bacteria and zooplankton grazing in HABs, and our approaches to investigating the ecological and genetic basis for the production of toxins and allelochemicals. Increasingly,eutrophication and climate change are viewed andmanaged as multifactorial environmental stressors that will further challenge managers of coastal resources and those responsible for protecting human health. Here we review HABscience with an eye toward new concepts and approaches,emphasizing, where possible, the unexpected yet promising new directions that research has taken in this diverse field.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    International Association for Plant Taxonomy
    In:  EPIC3Taxon, International Association for Plant Taxonomy, 63(4), pp. 932-933, ISSN: 0040-0262
    Publikationsdatum: 2014-10-07
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2017-01-04
    Beschreibung: Author Posting. © Author Posting. © International Society of Protistologists, 2006. This is the author's version of the work. It is posted here by permission of International Society of Protistologists for personal use, not for redistribution. The definitive version was published in Journal of Eukaryotic Microbiology 53 (2006): 211-216, doi:10.1111/j.1550-7408.2006.00097.x.
    Beschreibung: Several harmful photosynthetic dinoflagellates have been examined over past decades for unique chemical biomarker sterols. Little emphasis has been placed on important heterotrophic genera, such as Amoebophrya, an obligate, intracellular parasite of other, often harmful, dinoflagellates with the ability to control host populations naturally. Therefore, the sterol composition of Amoebophrya was examined throughout the course of an infective cycle within its host dinoflagellate, Alexandrium tamarense, with the primary intent of identifying potential sterol biomarkers. Amoebophrya possessed two primary C27 sterols, cholesterol and cholesta-5,22Z-dien-3-ol (cis-22-dehydrocholesterol), which are not unique to this genus, but were found in high relative percentages that are uncommon to other genera of dinoflagellates. Because the host also possesses cholesterol as one of its major sterols, carbon stable isotope ratio characterization of cholesterol was performed in order to determine whether it was produced by Amoebophrya or derived intact from the host. Results indicated that cholesterol was not derived intact from the host. A comparison of the sterol profile of Amoebophrya to published sterol profiles of phylogenetic relatives revealed that its sterol profile most closely resembles that of the (proto)dinoflagellate Oxyrrhis marina rather than other extant genera.
    Beschreibung: Funding to JDL provided by a Middle Tennessee State University FRCAC 2005 grant is gratefully acknowledged. Funding also supplied to MRS and DMA from NOAA Center for Sponsored Coastal Ocean Research grant NA16OP2793 through the ECOHAB program.
    Schlagwort(e): Algae ; Lipid
    Repository-Name: Woods Hole Open Access Server
    Materialart: Preprint
    Format: 26112 bytes
    Format: 49152 bytes
    Format: 49152 bytes
    Format: 30208 bytes
    Format: 39936 bytes
    Format: 27136 bytes
    Format: 108544 bytes
    Format: application/msword
    Format: application/msword
    Format: application/msword
    Format: application/msword
    Format: application/msword
    Format: application/msword
    Format: application/msword
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    NOAA/National Centers for Coastal Ocean Science | Silver Spring, MD
    In:  http://aquaticcommons.org/id/eprint/14651 | 403 | 2014-02-24 00:08:40 | 14651 | United States National Ocean Service
    Publikationsdatum: 2021-06-30
    Beschreibung: This report is the product of a panel of experts in the science of blooms of unicellular marine algae which can cause mass mortalities in a variety of marine organisms and cause illness and even death in humans who consume contaminated seafood. These phenomena are collectively termed harmful algal blooms or HABs for short. As a counterpart to recent assessments of the priorities forscientific research to understand the causes and behavior of HABs, this assessment addressed the management options for reducing their incidence and extent (prevention), actions that can quell or contain blooms (control), and steps to reduce the losses of resources or economic values and minimize human health risks (mitigation).This assessment is limited to an appraisal of scientific understanding, but also reflects consideration of information and perspectives provided by regional experts, agency managers and user constituencies during three regional meetings. The panel convened these meetings during the latter half of 1996 to solicit information and opinions from scientific experts, agency managers and user constituencies in Texas, Washington, and Florida. The panel's assessment limited its attention to those HABs that result in neurotoxic shellfish poisoning, paralytic shellfish poisoning, brown tides, amnesic shellfish poisoning, and aquaculture fish kills. This covers most, but certainly not all, HAB problems in the U.S.
    Schlagwort(e): Biology ; Ecology ; Fisheries
    Repository-Name: AquaDocs
    Materialart: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 46
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...