GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-01-04
    Description: Author Posting. © Author Posting. © International Society of Protistologists, 2006. This is the author's version of the work. It is posted here by permission of International Society of Protistologists for personal use, not for redistribution. The definitive version was published in Journal of Eukaryotic Microbiology 53 (2006): 211-216, doi:10.1111/j.1550-7408.2006.00097.x.
    Description: Several harmful photosynthetic dinoflagellates have been examined over past decades for unique chemical biomarker sterols. Little emphasis has been placed on important heterotrophic genera, such as Amoebophrya, an obligate, intracellular parasite of other, often harmful, dinoflagellates with the ability to control host populations naturally. Therefore, the sterol composition of Amoebophrya was examined throughout the course of an infective cycle within its host dinoflagellate, Alexandrium tamarense, with the primary intent of identifying potential sterol biomarkers. Amoebophrya possessed two primary C27 sterols, cholesterol and cholesta-5,22Z-dien-3-ol (cis-22-dehydrocholesterol), which are not unique to this genus, but were found in high relative percentages that are uncommon to other genera of dinoflagellates. Because the host also possesses cholesterol as one of its major sterols, carbon stable isotope ratio characterization of cholesterol was performed in order to determine whether it was produced by Amoebophrya or derived intact from the host. Results indicated that cholesterol was not derived intact from the host. A comparison of the sterol profile of Amoebophrya to published sterol profiles of phylogenetic relatives revealed that its sterol profile most closely resembles that of the (proto)dinoflagellate Oxyrrhis marina rather than other extant genera.
    Description: Funding to JDL provided by a Middle Tennessee State University FRCAC 2005 grant is gratefully acknowledged. Funding also supplied to MRS and DMA from NOAA Center for Sponsored Coastal Ocean Research grant NA16OP2793 through the ECOHAB program.
    Keywords: Algae ; Lipid
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 26112 bytes
    Format: 49152 bytes
    Format: 49152 bytes
    Format: 30208 bytes
    Format: 39936 bytes
    Format: 27136 bytes
    Format: 108544 bytes
    Format: application/msword
    Format: application/msword
    Format: application/msword
    Format: application/msword
    Format: application/msword
    Format: application/msword
    Format: application/msword
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Marine biotoxins and harmful algae represent a significant and expanding threat to human health and fisheries resources throughout the U.S. This problem takes many forms, ranging from massive "red tides" or blooms of cells that discolor the water to dilute, inconspicuous concentrations of cells noticed only because of the harm caused by the highly potent toxins those cells contain. Impacts include mass mortalities of wild and farmed fish, human intoxications and death from contaminated shellfish or fish, alterations of marine trophic structure, and death of marine mammals, seabirds, and other animals. The nature of the problem has changed considerably over the last two decades in the U.S. Where formerly a few regions were affected, now virtally every coastal state is threatened, in many cases over large geographic areas and by more than one harmful species. The U.S. research, monitoring, and regulatory infrastructure is not adequately prepared to meet this expanding threat. In an effort to surmount these problems, a workshop was convened to formulate a National Plan for the prediction, control, and mitigation of the effects of harmful algal blooms on the U.S. marine biota. This report summarizes the status of U.S. research knowledge and capabilties, and identifies areas where research funds should be directed for maximum benefit.
    Description: Funding was provided by National Marine Fisheries Servce Saltonstall-Kennedy grant No. NA27FD0092-01, National Marine Fisheries Servce Charleston Laboratory and by the NOAA Coastal Oceans Program.
    Keywords: Marine biotoxins ; Harmful algae blooms ; Red tides
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 5740725 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Society for Microbiology, 2006. This article is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Applied and Environmental Microbiology 72 (2006): 5742-5749, doi:10.1128/AEM.00332-06.
    Description: Harmful algal blooms (HABs) are a serious threat to coastal resources, causing a variety of impacts on public health, regional economies, and ecosystems. Plankton analysis is a valuable component of many HAB monitoring and research programs, but the diversity of plankton poses a problem in discriminating toxic from nontoxic species using conventional detection methods. Here we describe a sensitive and specific sandwich hybridization assay that combines fiber-optic microarrays with oligonucleotide probes to detect and enumerate the HAB species Alexandrium fundyense, Alexandrium ostenfeldii, and Pseudo-nitzschia australis. Microarrays were prepared by loading oligonucleotide probe-coupled microspheres (diameter, 3 μm) onto the distal ends of chemically etched imaging fiber bundles. Hybridization of target rRNA from HAB cells to immobilized probes on the microspheres was visualized using Cy3-labeled secondary probes in a sandwich-type assay format. We applied these microarrays to the detection and enumeration of HAB cells in both cultured and field samples. Our study demonstrated a detection limit of approximately 5 cells for all three target organisms within 45 min, without a separate amplification step, in both sample types. We also developed a multiplexed microarray to detect the three HAB species simultaneously, which successfully detected the target organisms, alone and in combination, without cross-reactivity. Our study suggests that fiber-optic microarrays can be used for rapid and sensitive detection and potential enumeration of HAB species in the environment.
    Description: This work was funded by the Sea Grant Technology Program (NA16RG2273).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 328437 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Experimental Marine Biology and Ecology 336 (2006): 230-241, doi:10.1016/j.jembe.2006.05.013.
    Description: Chattonella marina, a red tide or harmful algal bloom species, has caused mass fish kills and serious economic loss worldwide, and yet its toxic actions remain highly controversial. Previous studies have shown that this species is able to produce reactive oxygen species (ROS), and therefore postulated that ROS are the causative agents of fish kills. The present study investigates antioxidant responses and lipid peroxidation in gills and erythrocytes of fish (Rhabdosarga sarba) upon exposure to C. marina, compared with responses exposed to equivalent and higher levels of ROS exposure. Even though C. marina can produce a high level of ROS, gills and erythrocytes of sea bream exposed to C. marina for 1 to 6 h showed neither significant induction of antioxidant enzymes nor lipid peroxidation. Antioxidant responses and oxidative damage did not occur as fish mortality began to occur, yet could be induced upon exposure to artificially supplied ROS levels an order of magnitude higher. The result of this study implies that ROS produced by C. marina is not the principal cause of fish kills.
    Description: This study was supported by a CERG grant (CityU 1109/03M / No. 9040864) of the University Grants Committee, Hong Kong SAR government. Support for Don Anderson was also provided by the U.S. National Science Foundation through grant no. OCE-0136861.
    Keywords: Harmful algal blooms ; Reactive oxygen species ; Antioxidant responses ; Lipid peroxidation
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 459039 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © Blackwell, 2006. This is the author's version of the work. It is posted here by permission of Blackwell for personal use, not for redistribution. The definitive version was published in Molecular Ecology Notes 6 (2006): 756-758, doi:10.1111/j.1471-8286.2006.01331.x.
    Description: Outbreaks of paralytic shellfish poisoning caused by the toxic dinoflagellate Alexandrium minutum (Dinophyceae) are a worldwide concern from both the economic and human health points of view. For population genetic studies of A. minutum distribution and dispersal, highly polymorphic genetic markers are of great value. We isolated 12 polymorphic microsatellites from this cosmopolitan, toxic dinoflagellate species. These loci provide one class of highly variable genetic markers, as the number of alleles ranged from 4 to 12, and the estimate of gene diversity was from 0.560 to 0.862 across the 12 microsatellites; these loci have the potential to reveal genetic structure and gene flow among A. minutum populations.
    Description: Support for this research provided in part (to DMA) by U.S. National Science Foundation grants OCE-0136861 and OCE-0430724, and the National Institute of Environmental Health Sciences Grant 1 P50 ES012742-01.
    Keywords: Alexandrium minutum ; Microsatellite ; Paralytic shellfish poisoning ; Phytoplankton ; SSR ; Toxic dinoflagellate
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 189512 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © Oceanography Society, 2005. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 18, 2 (2005): 136-147.
    Description: Marine and fresh waters team with life, much of it microscopic, and most of it harmless; in fact, it is this microscopic life on which all aquatic life ultimately depends for food. Microscopic algae also play an important role in regulating atmospheric CO2 by sequestering it during production and transporting it to deeper waters. Yet some of the microscopic “algae” cause problems when they accumulate in sufficient numbers, due either to their production of endogenous toxins, or to their sheer biomass or even their physical shape. These are known as the harmful algae, or, when in sufficient numbers, harmful algal blooms (HABs). These blooms were formerly called “red tides” because many were composed of dinoflagellates containing red pigments that in high densities colored the water red, but blooms may also be green, yellow, or brown, depending on the type of algae present and their pigmentation. As with all blooms, their proliferation results from a combination of physical, chemical, and biological mechanisms and their interactions with other components of the food web that are for the most part poorly understood. Most HABs are dinoflagellates or cyanobacteria, but other classes of algae, including diatoms, have members that may form HABs under some conditions. As stated by J. Ryther and co-workers many years ago, “...there is no necessity to postulate obscure factors which would account for a prodigious growth of dinoflagellates to explain red water. It is necessary only to have conditions favoring the growth and dominance of a moderately large population of a given species, and the proper hydrographic and meteorological conditions to permit the accumulation of organisms at the surface and to effect their future concentrations in localized areas” (Ryther, 1955).
    Description: Funding for these activities has been provided by NSF, NOAA, and the European Commission DG Research-Environment Directorate. GEOHAB is an initiative of SCOR (Scientific Committee on Oceanic Research) and IOC (Intergovernmental Oceanographic Commission of UNESCO). P. Glibert and D. Anderson were funded by the National Oceanic and Atmospheric Administration (NOAA), ECOHAB, MERHAB and NSF.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © Oceanography Society, 2005. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 18, 2 (2005): 238-245.
    Description: More than a decade ago, the U.S. approach to research on harmful algal blooms (HABs) was uncoordinated and modest in scale. Research groups were few and their work was piecemeal and constrained by small budgets that fluctuated with the sporadic blooms that would occur. There were virtually no U.S. government laboratories involved in HAB research. Funding for academic scientists was largely available through competitions with the entire oceanographic community since there were no targeted funding programs for HABs. This situation changed dramatically with the formulation of Marine Biotoxins and Harmful Algal Blooms: A National Plan (Anderson et al., 1993). This plan, the result of a workshop involving academic and federal scientists, agency officials, and industry representatives identified major impediments to the goal of science-based management of resources affected by HABs, and made recommendations on the steps needed to remove those impediments.
    Description: Funding to support the development of the National Plan was provided by the National Centers for Coastal Ocean Science (CSCOR and CCEHBR).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Blooms of toxic or harmful microalgae, commonly called "red tides," represent a significant and expanding threat to human health and fisheries resources throughout the United States and the world. Ecological, aesthetic, and public health impacts include: mass mortalities of wild and farmed fish and shellfish, human intoxication and death from the consumption of contaminated shellfish or fish, alterations of marine food webs through adverse effects on larvae and other life history stages of commercial fish species, the noxious smell and appearance of algae accumulated in nearshore waters or deposited on beaches, and mass mortalities of marine mammals, seabirds, and other animals. In this report, we provide an estimate of the economic impacts of HABs in the United States from events where such impacts were measurable with a fair degree of confidence during the interval 1987-92. The total economic impact averaged $49 million per year, with public health impacts representing the largest component (45 percent). Commercial fisheries impacts were the next largest (37 percent of the total), while recreation/tourism accounted for 13 percent, and monitoring/management impacts 4 percent. These estimates are highly conservative, as many economic costs or impacts from HABs could not be estimated.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration under Grants No. NA46RG0470 and NA90AA-D-SG480, the National Science Foundation under Grant No. OCE-9321244, and the Johnson Endowment of the Marine Policy Center.
    Keywords: Harmful algal blooms ; HABs ; Red tides ; Economic impacts ; Brown tides ; United States
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 8091490 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: © 2006 Erdner and Anderson. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The definitive version was published in BMC Genomics 7 (2006): 88, doi:10.1186/1471-2164-7-88.
    Description: Dinoflagellates are one of the most important classes of marine and freshwater algae, notable both for their functional diversity and ecological significance. They occur naturally as free-living cells, as endosymbionts of marine invertebrates and are well known for their involvement in "red tides". Dinoflagellates are also notable for their unusual genome content and structure, which suggests that the organization and regulation of dinoflagellate genes may be very different from that of most eukaryotes. To investigate the content and regulation of the dinoflagellate genome, we performed a global analysis of the transcriptome of the toxic dinoflagellate Alexandrium fundyense under nitrate- and phosphate-limited conditions using Massively Parallel Signature Sequencing (MPSS).
    Description: This work was funded by National Science Foundation OCE-0136861 and OCE-0430724, National Institute of Environmental Health Sciences 1 P50 ES012742-01, and a grant from the Woods Hole Oceanographic Institution Ocean Life Institute.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 370083 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B. V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 52 (2005): 2698-2714, doi:10.1016/j.dsr2.2005.06.021.
    Description: Observations of Alexandrium fundyense in the Gulf of Maine indicate several salient characteristics of the vegetative cell distributions: patterns of abundance are gulf-wide in geographic scope; their main features occur in association with the Maine Coastal Current; and the center of mass of the distribution shifts upstream from west to east during the growing season from April to August. The mechanisms underlying these aspects are investigated using coupled physical-biological simulations that represent the population dynamics of A. fundyense within the seasonal mean flow. A model that includes germination, growth, mortality, and nutrient limitation is qualitatively consistent with the observations. Germination from resting cysts appears to be a key aspect of the population dynamics that confines the cell distribution near the coastal margin, as simulations based on a uniform initial inoculum of vegetative cells across the Gulf of Maine produces blooms that are broader in geographic extent than is observed. In general, cells germinated from the major cyst beds (in the Bay of Fundy and near Penobscot and Casco Bays) are advected in the alongshore direction from east to west in the coastal current. Growth of the vegetative cells is limited primarily by temperature from April through June throughout the gulf, whereas nutrient limitation occurs in July and August in the western gulf. Thus the seasonal shift in the center of mass of cells from west to east can be explained by changing growth conditions: growth is more rapid in the western gulf early in the season due to warmer temperatures, whereas growth is more rapid in the eastern gulf later in the season due to severe nutrient limitation in the western gulf during that time period. A simple model of encystment based on nutrient limitation predicts deposition of new cysts in the vicinity of the observed cyst bed offshore of Casco and Penobscot Bays, suggesting a pathway of re-seeding the bed from cells advected downstream in the coastal current. A retentive gyre at the mouth of the Bay of Fundy tends to favor re-seeding that cyst bed from local populations.
    Description: We gratefully acknowledge the support of the US ECOHAB Program, sponsored by NOAA, NSF, EPA, NASA, and ONR.
    Keywords: Phytoplankton ; Population dynamics ; Red tides ; Paralytic shellfish poisoning ; USA ; Gulf of Maine
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 1990936 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...