GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 11 (2016): e0153197, doi:10.1371/journal.pone.0153197.
    Description: Benthic dinoflagellates in the genus Gambierdiscus produce the ciguatoxin precursors responsible for the occurrence of ciguatera toxicity. The prevalence of ciguatera toxins in fish has been linked to the presence and distribution of toxin-producing species in coral reef ecosystems, which is largely determined by the presence of suitable benthic habitat and environmental conditions favorable for growth. Here using single factor experiments, we examined the effects of salinity, irradiance, and temperature on growth of 17 strains of Gambierdiscus representing eight species/phylotypes (G. belizeanus, G. caribaeus, G. carolinianus, G. carpenteri, G. pacificus, G. silvae, Gambierdiscus sp. type 4–5), most of which were established from either Marakei Island, Republic of Kiribati, or St. Thomas, United States Virgin Island (USVI). Comparable to prior studies, growth rates fell within the range of 0–0.48 divisions day-1. In the salinity and temperature studies, Gambierdiscus responded in a near Gaussian, non-linear manner typical for such studies, with optimal and suboptimal growth occurring in the range of salinities of 25 and 45 and 21.0 and 32.5°C. In the irradiance experiment, no mortality was observed; however, growth rates at 55μmol photons · m-2 · s-1 were lower than those at 110–400μmol photons · m-2 · s-1. At the extremes of the environmental conditions tested, growth rates were highly variable, evidenced by large coefficients of variability. However, significant differences in intraspecific growth rates were typically found only at optimal or near-optimal growth conditions. Polynomial regression analyses showed that maximum growth occurred at salinity and temperature levels of 30.1–38.5 and 23.8–29.2°C, respectively. Gambierdiscus growth patterns varied among species, and within individual species: G. belizeanus, G. caribaeus, G. carpenteri, and G. pacificus generally exhibited a wider range of tolerance to environmental conditions, which may explain their broad geographic distribution. In contrast, G. silvae and Gambierdiscus sp. types 4–5 all displayed a comparatively narrow range of tolerance to temperature, salinity, and irradiance.
    Description: This study was funded by the National Natural Science Foundation of China (41506137); Guangxi Natural Science Foundation (2015GXNSFCA139003), Centers for Disease Control and Prevention (U01 EH000421); USFDA (F223201000060C); NOAA NOS through the CiguaHAB program (Cooperative Agreement NA11NOS4780060, NA11NOS4780028); the Lana Vento Trust and VI-EPSCoR Program (NSF award # 346483 & 081441); and a System Fund from Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (2014BGERLXT01). Support was also provided by the Woods Hole Center for Oceans and Human Health through National Science Foundation (NSF) Grant OCE-1314642, National Institute of Environmental Health Sciences (NIEHS) Grant 1-P01-ES021923-014, as well as the China Scholarship Council.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 8 (2013): e81150, doi:10.1371/journal.pone.0081150.
    Description: Parasitic dinoflagellates of the genus Amoebophrya infect free-living dinoflagellates, some of which can cause harmful algal blooms (HABs). High prevalence of Amoebophrya spp. has been linked to the decline of some HABs in marine systems. The objective of this study was to evaluate the impact of Amoebophrya spp. on the dynamics of dinoflagellate blooms in Salt Pond (MA, USA), particularly the harmful species Alexandrium fundyense. The abundance of Amoebophrya life stages was estimated 3–7 days per week through the full duration of an annual A. fundyense bloom using fluorescence in situ hybridization coupled with tyramide signal amplification (FISH- TSA). More than 20 potential hosts were recorded including Dinophysis spp., Protoperidinium spp. and Gonyaulax spp., but the only dinoflagellate cells infected by Amoebophrya spp. during the sampling period were A. fundyense. Maximum A. fundyense concentration co-occurred with an increase of infected hosts, followed by a massive release of Amoebophrya dinospores in the water column. On average, Amoebophrya spp. infected and killed ~30% of the A. fundyense population per day in the end phase of the bloom. The decline of the host A. fundyense population coincided with a dramatic life-cycle transition from vegetative division to sexual fusion. This transition occurred after maximum infected host concentrations and before peak infection percentages were observed, suggesting that most A. fundyense escaped parasite infection through sexual fusion. The results of this work highlight the importance of high frequency sampling of both parasite and host populations to accurately assess the impact of parasites on natural plankton assemblages.
    Description: L. Velo-Sua´rez was supported by a Marie Curie International Outgoing Fellowship (IOF; grant agreement: MOHAB PIOF-GA-252260). This work was supported in part by NSF grants OCE-0430724 and OCE-0911031 and National Institute of Environmental Health Sciences grants 1P50-ES01274201 and 1P01ES021923-01 to D.M. Anderson and D.J. McGillicuddy through the Woods Hole Center for Oceans and Human Health, National Park Service Cooperative Agreement H238015504 to D.M. Anderson.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 6 (2011): e22965, doi:10.1371/journal.pone.0022965.
    Description: Historically, cosmopolitan phytoplankton species were presumed to represent largely unstructured populations. However, the recent development of molecular tools to examine genetic diversity have revealed differences in phytoplankton taxa across geographic scales and provided insight into the physiology and ecology of blooms. Here we describe the genetic analysis of an extensive bloom of the toxic dinoflagellate Alexandrium fundyense that occurred in the Gulf of Maine in 2005. This bloom was notable for its intensity and duration, covering hundreds of kilometers and persisting for almost two months. Genotypic analyses based on microsatellite marker data indicate that the open waters of the northeastern U.S. harbor a single regional population of A. fundyense comprising two genetically distinct sub-populations. These subpopulations were characteristic of early- and late-bloom samples and were derived from the northern and southern areas of the bloom, respectively. The temporal changes observed during this study provide clear evidence of succession during a continuous bloom and show that selection can act on the timescale of weeks to significantly alter the representation of genotypes within a population. The effects of selection on population composition and turnover would be magnified if sexual reproduction were likewise influenced by environmental conditions. We hypothesize that the combined effects of differential growth and reproduction rates serves to reduce gene flow between the sub-populations, reinforcing population structure while maintaining the diversity of the overall regional population.
    Description: This work was supported by the National Institute of Environmental Health Sciences (1-P50-ES012742 to DMA and DLE), by the National Science Foundation through the Woods Hole Center for Oceans and Human Health (OCE-0430724), and by the ECOHAB program (NOAA Grant NA06NOS4780245).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Format: image/tiff
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 5 (2010): e9688, doi:10.1371/journal.pone.0009688.
    Description: Dinoflagellates are unicellular, often photosynthetic protists that play a major role in the dynamics of the Earth's oceans and climate. Sequencing of dinoflagellate nuclear DNA is thwarted by their massive genome sizes that are often several times that in humans. However, modern transcriptomic methods offer promising approaches to tackle this challenging system. Here, we used massively parallel signature sequencing (MPSS) to understand global transcriptional regulation patterns in Alexandrium tamarense cultures that were grown under four different conditions. We generated more than 40,000 unique short expression signatures gathered from the four conditions. Of these, about 11,000 signatures did not display detectable differential expression patterns. At a p-value 〈 1E-10, 1,124 signatures were differentially expressed in the three treatments, xenic, nitrogen-limited, and phosphorus-limited, compared to the nutrient-replete control, with the presence of bacteria explaining the largest set of these differentially expressed signatures. Among microbial eukaryotes, dinoflagellates contain the largest number of genes in their nuclear genomes. These genes occur in complex families, many of which have evolved via recent gene duplication events. Our expression data suggest that about 73% of the Alexandrium transcriptome shows no significant change in gene expression under the experimental conditions used here and may comprise a “core” component for this species. We report a fundamental shift in expression patterns in response to the presence of bacteria, highlighting the impact of biotic interaction on gene expression in dinoflagellates.
    Description: This work was primarily funded by a collaborative grant from the National Institutes of Health (R01 ES 013679-01A2) awarded to DB, DMA, and M. Bento Soares. Funding support for DMA and DLE was also provided from the Woods Hole Center for Oceans and Human Health from the NSF/NIEHS Centers for Oceans and Human Health program, NIEHS (P50 ES 012742) and (NSF OCE-043072). Additional support came from the National Science Foundation (EF-0732440) in a grant awarded to F. Gerald Plumley, DB, JDH, and DMA. AM was supported by an Institutional NRSA (T 32 GM98629).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 12 (2017): e0184849, doi:10.1371/journal.pone.0184849.
    Description: Diatoms are important components of marine ecosystems and contribute greatly to the world's primary production. Despite their important roles in ecosystems, the molecular basis of how diatoms cope with oxidative stress caused by nutrient fluctuations remains largely unknown. Here, an isobaric tags for relative and absolute quantitation (iTRAQ) proteomic method was coupled with a series of physiological and biochemical techniques to explore oxidative stress- and cell fate decision-related cellular and metabolic responses of the diatom Thalassiosira pseudonana to nitrate (N) and inorganic phosphate (P) stresses. A total of 1151 proteins were detected; 122 and 56 were significantly differentially expressed from control under N- and P-limited conditions, respectively. In N-limited cells, responsive proteins were related to reactive oxygen species (ROS) accumulation, oxidative stress responses and cell death, corresponding to a significant decrease in photosynthetic efficiency, marked intracellular ROS accumulation, and caspase-mediated programmed cell death activation. None of these responses were identified in P-limited cells; however, a significant up-regulation of alkaline phosphatase proteins was observed, which could be the major contributor for P-limited cells to cope with ambient P deficiency. These findings demonstrate that fundamentally different metabolic responses and cellular regulations are employed by the diatom in response to different nutrient stresses and to keep the cells viable.
    Description: This study was funded by the National Natural Science Foundation of China (41576138, 41076080, 41576138) to Dr. Jun-Rong Liang; the Woods Hole Center for Oceans and Human Health, National Science Foundation (OCE-1314642) to Dr. DonaldM Anderson; the National Institute of Environmental Health Sciences (1-P01-ES021923- 01) to Dr. DonaldM Anderson; and the ERC Advanced Award Diatomite and ANR project DiaDomOil to Dr. Chris Bowler.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...