GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2010-2014  (15)
  • 2014  (4)
  • 2012  (11)
Publikationsart
Sprache
Erscheinungszeitraum
  • 2010-2014  (15)
Jahr
  • 1
    Schlagwort(e): Forschungsbericht ; Peru ; Chile Nord ; Kontinentalrand ; Bathymetrie
    Materialart: Buch
    Seiten: 8, 24Bl. , graph. Darst., zahlr. Kt.
    Sprache: Deutsch
    Anmerkung: Förderkennzeichen BMBF 03G0209B. - Kartenanh. u.d.T.: Bathymetric chart of the South East Pacific , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden. - Auch als elektronische Ressource vorh
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Schlagwort(e): Forschungsbericht ; Peru ; Chile Nord ; Kontinentalrand ; Bathymetrie
    Materialart: Online-Ressource
    Seiten: Online-Ressource (34 S., 32,13 MB) , graph. Darst., zahlr. Kt.
    Sprache: Deutsch
    Anmerkung: Förderkennzeichen BMBF 03G0209B. - Kartenanh. u.d.T.: Bathymetric chart of the South East Pacific , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden. - Auch als gedr. Ausg. vorh , Systemvoraussetzungen: Acrobat reader.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2018-01-05
    Beschreibung: The Møre Margin in the NE Atlantic represents a dominantly passive margin with an unusual abrupt transition from alpine morphology onshore to a deep sedimentary basin offshore. In order to study this transition in detail, three ocean bottom seismometer profiles with deep seismic reflection and refraction data were acquired in 2009; two dip-profiles which were extended by land stations, and one tie-profile parallel to the strike of the Møre–Trøndelag Fault Complex. The modeling of the wide-angle seismic data was performed with a combined inversion and forward modeling approach and validated with a 3D-density model. Modeling of the geophysical data indicates the presence of a 12–15 km thick accumulation of sedimentary rocks in the Møre Basin. The modeling of the strike profile located closer to land shows a decrease in crustal velocity from north to south. Near the coast we observe an intra-crustal reflector under the Trøndelag Platform, but not under the Slørebotn Sub-basin. Furthermore, two lower crustal high-velocity bodies are modeled, one located near the Møre Marginal High and one beneath the Slørebotn Sub-basin. While the outer lower crustal body is modeled with a density allowing an interpretation as magmatic underplating, the inner body has a density close to mantle density which might suggest an origin as an eclogized body, formed by metamorphosis of lower crustal gabbro during the Caledonian orogeny. The difference in velocity and extent of the lower crustal bodies seems to be controlled by the Jan Mayen Lineament, suggesting that the lineament represents a pre-Caledonian structural feature in the basement.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-09-23
    Beschreibung: The Chile Triple Junction (CTJ) is the place where the Chile Ridge (Nazca–Antarctic spreading center) is subducting beneath the continental South American plate. Sediment accretion is active to the south of the CTJ in the area where the northward migrating Chile Ridge has collided with the continent since 14 Ma. At the CTJ, tectonic erosion of the overriding plate narrows and steepens the continental slope. We present here a detailed tomographic image of the upper lithospheric Antarctic–South America subduction zone where the Chile Ridge collided with the continent 3–6 Ma off Golfo de Penas. Results reveal that a large portion of trench sediment has been scraped off and frontally accreted to the forearc forming a 70–80 km wide accretionary prism. The velocity–depth model shows a discontinuity at 30–40 km landward of the deformation front, which is interpreted as the contact between the frontal (poorly consolidated sedimentary unit) and middle (more compacted sedimentary unit) accretionary prism. The formation of this discontinuity could be related to a short term episode of reduced trench sedimentation. In addition, we model the shape of the continental slope using a Newtonian fluid rheology to study the convergence rate at which the accretionary prism was formed. Results are consistent with an accretionary prism formed after the collision of the Chile Ridge under slow convergence rate similar to those observed at present between Antarctic and South America (∼2.0 cm/a). Based on the kinematics of the Chile Ridge subduction during the last 13 Ma, we propose that the accretionary prism off Golfo de Penas was formed recently (∼5 Ma) after the collision of the Chile Ridge with South America.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    In:  [Talk] In: Kolloquium der Schwerpunktprogramme „Integrated Ocean Drilling Program/Ocean Drilling Program“ (IODP/ODP) und „International Continental Scientific Drilling Program“ (ICDP), 07.-09.03.2012, Kiel .
    Publikationsdatum: 2012-03-05
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    Copernicus Publications (EGU)
    In:  [Talk] In: EGU General Assembly 2012, 22.04.-27.04.2012, Vienna, Austria . Geophysicas Research Abstracts .
    Publikationsdatum: 2012-12-27
    Beschreibung: Within Europe there are more than 380 Ocean Bottom Seismometers (OBS) distributed across 10 instrument parks in 6 countries. At least 120 of these OBS are wideband or broadband, over 260 can be deployed for at least 6 months at a time and 140 for at least one year. New parks are planned in two other European countries, which should add over 70 OBSs to this “fleet”. However, these parks are under the control of individual countries or universities and hence to date this has made it difficult to organize large-scale experiments, especially for seismologists without marine experience. There has recently been an initiative to coordinate the use of these distributed instruments and their data products, to encourage large-scale experiments, possibly with onshore and offshore components, by seismologists who have not necessarily used OBSs before. The ongoing or planned developments include: Helping scientists with marine-specific formalities such as ship requests; clearer explanations of the noise floors of OBS instrumentation; improved clarity of instrument pricing and availability; standardized data output formats and data validation; and archiving in established seismological data centers. These efforts should allow improved experiment design in scientifically interesting regions with an offshore component and an easier, clearer way to organize large-scale, multi-country experiments. We will present details of this initiative to help organize large-scale experiments, the particularities of OBS sensors and marine deployments, the available instrumentation and new developments.
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    In:  [Talk] In: The Lübeck Retreat, Collaborative Research Centre SFB 574 Volatiles and Fluids in Subduction Zones: Climate Feedback and Trigger Mechanisms for Natural Disasters, 23.05.-25.05.2012, Lübeck . The Lübeck Retreat, Collaborative Research Centre SFB 574 Volatiles and Fluids in Subduction Zones: Climate Feedback and Trigger Mechanisms for Natural Disasters : final colloquium of SFB 574 ; May 23-25, 2012; program & abstracts ; p. 1 .
    Publikationsdatum: 2019-09-23
    Beschreibung: Within the project SFB574, an “amphibious” network of 15 ocean bottom seismometers and 27 land stations was operated from April to October 2008 along 350 km from the outer-rise to the magmatic arc. Additional readings from 11 permanent stations of the Chilean Seismological Service were included in the database improving onshore coverage. One of the main goals of the project is to gain a detailed image of the crustal and upper mantle structure and the seismogenic zone by analyzing earthquake distribution and combined passive and active source seismic tomographic images. To achieve precise earthquake locations and to serve as an initial model for local earthquake tomography, we derived a P- and S-wave minimum-1D model using a very high-quality subset of 340 events (GAP ! 180°, at least 10 P-wave and 5 S-wave arrivals) and velocity information from a wideangle profile shot in the area. Most of the ~1200 earthquakes recorded in our target area were originated within the subducting slab down to ~140 km depth, with a higher concentration beneath the main cordillera, at depths of 80-110 km. Fewer events were generated at the outer-rise, at depths of ~20-40 km, closely following the NE-SW trend of the oceanic plate faulting. The database was relocated using the minimum 1-D model and a subset of 400 events (GAP ! 180°, at least 8 P-wave arrivals) with ~7000 observations was selected to perform a P-wave tomography. Our results confirm the strong, lateral velocity gradient in the forearc seen in previous works along the margin, interpreted as the transition between a paleoaccretionary complex and the seaward edge of the Paleozoic continental framework. The downdip limit of the interplate seismicity previous to the great earthquake was aparently controlled by a low-velocity anomaly at ~40 km depth, shallower than the deeper extent estimated by geodetic modeling of the rutpture and from aftershocks relocation for the Maule earthquake. The interplate seismicity nucleated from ~40 up to ~20 km depth, and did not extend up to the 100°C isotherm. It was sparse except for a cluster of ~1200 km2 offshore and SW of Pichilemu town, within an area where a locking " 75 % before the great earthquake has been estimated. The deep outer-rise seismicity and the low velocities on top suggest considerable hydration of the downgoing plate.
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    In:  [Talk] In: AGU Fall Meeting 2014, 15.-19.12.2014, San Francisco, USA .
    Publikationsdatum: 2014-09-03
    Beschreibung: The breakup of the Northeast Atlantic in the Early Eocene was magma-rich, forming the major part of the North Atlantic Igneous Province (NAIP). This is seen as extrusive and intrusive magmatism in the continental domain, and as a thicker than normal oceanic crust produced the first few million years after continental breakup. The maximum magma productivity and the duration of excess magmatism varies along the margins of Northwest Europe and East Greenland, to some extent as a function of the distance from the Iceland hotspot. The Vøring Plateau off mid-Norway is the northernmost of the margin segments in northwestern Europe with extensive magmatism. North of the plateau, magmatism dies off towards the Lofoten Margin, marking the northern boundary of the NAIP here. In 2003, as part of the Euromargins Program we collected an Ocean Bottom Seismometer (OBS) profile from mainland Norway, across the Lofoten Islands, and out into the deep ocean. Forward velocity modeling using raytracing reveals a continental margin that shows transitional features between magma-rich and magma-poor rifting. On one hand, we detect an up to 2 km thick and 40-50 km wide magmatic underplate of the outer continent, on the other hand, continental thinning is greater and intrusive magmatism less than farther south. Continental breakup also appears to be somewhat delayed compared to breakup on the Vøring Plateau, consistent with increased extension. This indicates that magmatic diking, believed to quickly lead to continental breakup of volcanic margins and thus to reduce continental thinning, played a much lesser role here than at the plateau. Early post-breakup oceanic crust is up to 8 km thick, less than half of that observed farther south. The most likely interpretation of these observations, is that the source for the excess magmatism of the NAIP was not present at the Lofoten Margin during rifting, and that the excess magmatism actually observed was the result of lateral transport from the south around breakup time.
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2019-04-11
    Materialart: Report , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2017-08-07
    Beschreibung: Following the devastating 2004 tsunami that hit the southwestern coast of Thailand, the need for detailed bathymetric data of the Andaman Sea outer shelf became evident in order to better predict tsunami wave propagation and coastal impact. Bathymetric data and subbottom profiler records covering the outer shelf and upper slope of the Thai exclusive economic zone (EEZ) were collected onboard Thai RV Chakratong Tongyai in 2006 and 2007. The data cover an area of approximately 3000 km2 between 500 and 1600 m water depth. The soundings allowed generating a final bathymetric grid with 50 m grid cell spacing. The outer shelf is rather smooth and slightly inclined southward, while the upper slope is strongly dissected by gullies. Several previously unknown features are identified including mud-domes, pockmarks, three large plateaus surrounded by moats, gas-charged sediment on subbottom profiler records, and only few indications for small submarine landslides on the upper slope. The largest of these possibly translational submarine landslides involved 2.2×107 m3 of sediment. This slide would have generated a tsunami wave of less than 0.12 m wave height. Considering the entire data, there is no evidence that landslides have been the source of tsunami waves in recent geological time. Highlights
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...