GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 119 (1994), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: As part of an intensive study of a small area of oceanic lithosphere, the British Institutions Reflection Profiling Syndicate (BIRPS) acquired closely spaced deepseismic-reflection profiles over the Early Cretaceous crust of the Cape Verde abyssal plain off West Africa. The survey consisted of profiles spaced at 4 km arranged into strike lines parallel to the old sea-floor spreading axis (‘isochron’ profiles) and orthogonal dip lines oriented in the original direction of spreading (‘flow’ profiles). A large-capacity, well-tuned airgun source and very quiet shooting conditions ensured a high signal-to-noise ratio for deep reflection. Devising a strategy for mitigating contamination from ‘wrap-around’ multiples arriving from previous shots enabled us to use the minimum possible shot-point interval (50 m) allowed for collecting long (18 s) records. Data processing was oriented towards a medium with low root-mean-square velocity, steeply dipping structure, and pervasive low apparent velocity noise from diffraction at the top of the igneous crust. The contrast between the isochron and flow profiles is striking. Isochron profiles are typically highly reflective throughout the igneous crust, consisting of bright, bidirectionally dipping reflection sets that extend in places from the top of the igneous basement down to the interpreted Moho reflection. These reflections do not offset intracrustal or top-basement structure and thus are not interpreted as faults: an igneous intrusive origin seems more likely. Flow profiles are more sparsely reflective but show individual steeply dipping reflections best developed in the upper igneous crust, continuing down in places to the Moho. Dipping reflections on the flow profiles are interpreted as major normal faults since they are clearly associated with offsets of the top of the basement as well as truncation of horizontal reflections within the igneous crust. The dominant dip of these reflections is to the west towards the spreading ridge axis. Reflections from the vicinity of the Moho, while well developed in some places, are not particularly prominent across the survey area. Moho reflections appear to show a different structural relation to crustal features on the isochron and flow profiles: on isochron profiles, dipping reflections occasionally flatten out into, and may merge with, the Moho reflection; on flow profiles, as dipping crustal reflections approach the Moho reflection, they are usually abruptly cut off by it without extending deeper. This survey shows how oceanic crustal structure can vary rapidly over relatively small areas, provides convincing evidence that a structurally complex fabric dominates oceanic igneous crust, and gives a conclusive observation of faults that penetrate the entire oceanic crust.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-10-18
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: Within Europe there are more than 380 Ocean Bottom Seismometers (OBS) distributed across 10 instrument parks in 6 countries. At least 120 of these OBS are wideband or broadband, over 260 can be deployed for at least 6 months at a time and 140 for at least one year. New parks are planned in two other European countries, which should add over 70 OBSs to this "fleet". However, these parks are under the control of individual countries or universities and hence to date this has made it difficult to organize large-scale experiments, especially for seismologists without marine experience. There has recently been an initiative to coordinate the use of these distributed instruments and their data products, to encourage large-scale experiments, possibly with onshore and offshore components, by seismologists who have not necessarily used OBSs before. The ongoing or planned developments include: Helping scientists with marine-specific formalities such as ship requests; clearer explanations of the noise floors of OBS instrumentation; improved clarity of instrument pricing and availability; standardized data output formats and data validation; and archiving in established seismological data centers. These efforts should allow improved experiment design in scientifically interesting regions with an offshore component and an easier, clearer way to organize large-scale, multi-country experiments. We will present details of this initiative to help organize large-scale experiments, the particularities of OBS sensors and marine deployments, the available instrumentation and new developments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  EPIC3IAHS-IAPSO-IASPEI Joint Assembly, Gothenburg, Sweden, 2013-07-22-2013-07-26
    Publication Date: 2019-07-17
    Description: Within Europe, more than 380 Ocean Bottom Seismometers (OBS) are distributed across 10 instrument parks in 6 countries. At least 120 of these OBS are wideband or broadband, over 260 can be deployed for at least 6 months at a time and 140 for at least one year. New parks are planned in two other European countries, which should add over 70 OBSs to this "fleet". However, these parks are under the control of individual countries or universities and hence to date this has made it difficult to organize large-scale experiments, especially for seismologists without marine experience. We report on a recent initiative to coordinate the use of these distributed instruments and their data products, to encourage large-scale experiments, possibly with onshore and offshore components, by seismologists who have not necessarily used OBSs before. The ongoing or planned developments include: Helping scientists with marine-specific formalities such as ship requests; clearer explanations of the noise floors of OBS instrumenta- tion; improved clarity of instrument pricing and availability; standardized data output formats and data validation; and archiving in established seismological data centers. These efforts should allow improved experiment design in scientifically interesting regions with an offshore component and an easier, clearer way to organize large-scale, multi-country experiments. We will present details of this initiative to help organize large-scale experiments, the particularities of OBS sensors and marine deployments, the available instrumentation and new developments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-03-19
    Description: The Sumatran subduction zone exhibits strong seismic and tsunamogenic potential with the prominent examples of the 2004, 2005 and 2007 earthquakes. Here, we invert travel time data of local earthquakes for vp and vp/vs velocity models of the central Sumatran forearc. Data were acquired by an amphibious seismometer network consisting of 52 land stations and 10 ocean bottom seismometers located on a segment of the Sumatran subduction zone that had not ruptured in a great earthquake since 1797 but witnessed recent ruptures to the north in 2005 (Nias earthquake, Mw = 8.7) and to the south in 2007 (Bengkulu earthquake, Mw = 8.5). 2D and 3D vp velocity anomalies reveal the downgoing slab and the sedimentary basins. Although the seismicity pattern in the study area appears to be strongly influenced by the obliquely subducting Investigator Fracture Zone to at least 200 km depth, the 3D velocity model shows prevailing trench parallel structures at depths of the plate interface. The tomographic model suggests a thinned crust below the basin east of the forearc islands (Nias, Pulau Batu, Siberut) at ~ 180 km distance to the trench. Vp velocities beneath the magmatic arc and the Sumatran fault zone SFZ are around 5 km/s at 10 km depth and the vp/vs ratios in the uppermost 10 km are low, indicating the presence of felsic lithologies typical for continental crust. We find moderately elevated vp/vs values of 1.85 at ~ 150 km distance to the trench in the region of the Mentawai fault. Vp/vs ratios suggest absence of large scale alteration of the mantle wedge and might explain why the seismogenic plate interface (observed as a locked zone from geodetic data) extends below the continental forearc Moho in Sumatra. Reduced vp velocities beneath the forearc basin covering the region between Mentawai Islands and the Sumatra mainland possibly reflect a reduced thickness of the overriding crust.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-08-08
    Description: Landslides associated with flank collapse are volumetrically the most significant sediment transport process around volcanic islands. Around Montserrat, in the Lesser Antilles, individual landslide deposits have volumes (1 to 20 km3) that are up to two orders of magnitude larger than recent volcanic dome collapses (up to 0.2 km3). The largest landslide deposits were emplaced in at least two stages, initiated by the emplacement of volcanic debris avalanches which then triggered larger-scale failure of seafloor sediment, with deformation propagating progressively downslope for up to 30 km on gradients of 〈 1°. An unusually detailed seismic, side-scan sonar and bathymetric dataset shows that the largest landslide off Montserrat (forming Deposit 8) incorporated ~ 70 m of in-situ sediment stratigraphy, and comprises ~ 80% seafloor sediment by volume. Well-preserved internal bedding and a lack of shortening at the frontally-confined toe of the landslide, shows that sediment failure involved only limited downslope transport. We discuss a range of models for progressively-driven failure of in-situ bedded seafloor sediment. For Deposit 8 and for comparable deposits elsewhere in the Lesser Antilles, we suggest that failure was driven by an over-running surface load that generated excess pore pressures in a weak and deforming undrained package of underlying stratigraphy. A propagating basal shear rupture may have also enhanced the downslope extent of sediment failure. Extensive seafloor-sediment failure may commonly follow debris avalanche emplacement around volcanic islands if the avalanche is emplaced onto a fine-grained parallel-bedded substrate. The timing of landslides off Montserrat is clustered, and associated with the deposition of thick submarine pyroclastic fans. These episodes of enhanced marine volcaniclastic input are separated by relatively quiescent periods of several 100 ka, and correspond to periods of volcanic edifice maturity when destructive processes dominate over constructive processes. Highlights: ► Marine volcanic debris avalanche emplacement can lead to much larger sediment failure. ► Failure is progressive, through in situ-strata, and frontally non-emergent. ► Sediment failure propagates on very low gradients, dominating final deposit volume. ► Process involves undrained loading and/or shear rupture, and may be repeated widely. ► Landslide timing reflects timescales of volcanic edifice growth and destruction
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-10-24
    Description: Large-magnitude intraplate earthquakes within the ocean basins are not well understood. The Mw 8.6 and Mw 8.2 strike-slip intraplate earthquakes on 11 April 2012, while clearly occurring in the equatorial Indian Ocean diffuse plate boundary zone, are a case in point, with disagreement on the nature of the focal mechanisms and the faults that ruptured. We use bathymetric and seismic reflection data from the rupture area of the earthquakes in the northern Wharton Basin to demonstrate pervasive brittle deformation between the Ninetyeast Ridge and the Sunda subduction zone. In addition to evidence of recent strike-slip deformation along approximately north-south–trending fossil fracture zones, we identify a new type of deformation structure in the Indian Ocean: conjugate Riedel shears limited to the sediment section and oriented oblique to the north-south fracture zones. The Riedel shears developed in the Miocene, at a similar time to the onset of diffuse deformation in the central Indian Ocean. However, left-lateral strike-slip reactivation of existing fracture zones started earlier, in the Paleocene to early Eocene, and compartmentalizes the Wharton Basin. Modeled rupture during the 11 April 2012 intraplate earthquakes is consistent with the location of two reactivated, closely spaced, approximately north-south–trending fracture zones. However, we find no evidence for WNW-ESE–trending faults in the shallow crust, which is at variance with most of the earthquake fault models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-09-15
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-09-15
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-06-22
    Description: The Sumatran margin suffered three great earthquakes in recent years (Aceh-Andaman 26 December 2004 Mw = 9.1, Nias 28 March 2005 Mw = 8.7, Bengkulu 12 September 2007 Mw = 8.5). Here we present local earthquake data from a dense, amphibious local seismic network covering a segment of the Sumatran margin that last ruptured in 1797. The occurrence of forearc islands along this part of the Sumatran margin allows the deployment of seismic land-stations above the shallow part of the thrust fault. In combination with ocean bottom seismometers this station geometry provides high quality hypocentre location for the updip end of the seismogenic zone in an area where geodetic data are also available. In this region, the Investigator Fracture Zone (IFZ), which consists of 4 sub-ridges, is subducted below the Sunda plate. This topography appears to influence seismicity at all depth intervals. A well-defined linear streak of seismicity extending from 80 to 200 km depth lies along the prolongation of closely spaced IFZ sub-ridges. More intermediate depth seismicity is located to the southeast of this string of seismicity and is related to subducted rough oceanic seafloor. The plate interface beneath Siberut Island which ruptured last in 1797 is characterised by almost complete absence of seismicity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...