GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Publication Date: 2018-01-05
    Description: The Møre Margin in the NE Atlantic represents a dominantly passive margin with an unusual abrupt transition from alpine morphology onshore to a deep sedimentary basin offshore. In order to study this transition in detail, three ocean bottom seismometer profiles with deep seismic reflection and refraction data were acquired in 2009; two dip-profiles which were extended by land stations, and one tie-profile parallel to the strike of the Møre–Trøndelag Fault Complex. The modeling of the wide-angle seismic data was performed with a combined inversion and forward modeling approach and validated with a 3D-density model. Modeling of the geophysical data indicates the presence of a 12–15 km thick accumulation of sedimentary rocks in the Møre Basin. The modeling of the strike profile located closer to land shows a decrease in crustal velocity from north to south. Near the coast we observe an intra-crustal reflector under the Trøndelag Platform, but not under the Slørebotn Sub-basin. Furthermore, two lower crustal high-velocity bodies are modeled, one located near the Møre Marginal High and one beneath the Slørebotn Sub-basin. While the outer lower crustal body is modeled with a density allowing an interpretation as magmatic underplating, the inner body has a density close to mantle density which might suggest an origin as an eclogized body, formed by metamorphosis of lower crustal gabbro during the Caledonian orogeny. The difference in velocity and extent of the lower crustal bodies seems to be controlled by the Jan Mayen Lineament, suggesting that the lineament represents a pre-Caledonian structural feature in the basement.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-24
    Description: Highlights • The basement at the mid-Norwegian Møre Margin is dominantly felsic in composition. • A lower crustal body is interpreted as a mixture of continental blocks and eclogite. • The thickness of the outer lower crustal body is twice as thick on the East Greenland Margin. • The thinning during this first phase of post-Caledonian extension was highest for proto Norway. Abstract The inner part of the volcanic, passive Møre Margin, mid-Norway, expresses an unusual abrupt thinning from high onshore topography with a thick crust to an offshore basin with thin crystalline crust. Previous P-wave modeling of wide-angle seismic data revealed the presence of a high-velocity (7.7–8.0 km/s) body in the lower crust in this transitional region. These velocities are too high to be readily interpreted as Early Cenozoic intrusions, a model often invoked to explain lower crustal high-velocity bodies in the region. We present a Vp/Vs model, derived from the modeling of wide-angle seismic data, acquired by use of Ocean Bottom Seismograph horizontal components. The modeling suggests dominantly felsic composition of the crust. An average Vp/Vs value for the lower crustal body is modeled at 1.77, which is compatible with a mixture of continental blocks and Caledonian eclogites. The results are compiled with earlier results into a transect extending from onshore Norway to onshore Greenland. Back-stripping of the transect to Early Cenozoic indicates asymmetric conjugate magmatism related to the continental break-up. Further back-stripping to the time when most of the Caledonian mountain range had collapsed indicates that the thinning during the first phase of extension was about 25% higher for proto Norway than proto Greenland.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...