GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Newark :American Geophysical Union,
    Keywords: Underwater acoustics. ; Seismic waves. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (283 pages)
    Edition: 1st ed.
    ISBN: 9781119750901
    Series Statement: Geophysical Monograph Series ; v.284
    DDC: 551.4654
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 An Introduction to the Ocean Soundscape -- 1.1 Introduction -- 1.2 Seismic Waves -- 1.2.1 Body Waves -- 1.2.2 Surface Waves -- 1.3 Noise Sources in the Oceans -- 1.3.1 Noise from Geological Origins (Geophony) -- 1.3.2 Noise from Biological Origins (Biophony) -- 1.3.3 Noise from Anthropogenic Origins (Anthrophony) -- 1.4 Tools for Recording Marine Noise -- 1.4.1 Ocean-Bottom Seismometers -- 1.4.2 Ocean-Bottom Nodes -- 1.4.3 Ocean-Bottom Observatories -- 1.4.4 Acoustic Doppler Current Profilers -- 1.4.5 Echosounders -- 1.4.6 Drifters and Floats -- 1.5 Common Data-Processing Methods -- 1.5.1 Time-Drift Correction -- 1.5.2 Data Reduction -- 1.5.3 Instrument Relocation through Travel-Time Analysis -- 1.5.4 Rotation for Geophone Reorientation -- 1.5.5 Converting from Counts to Physical Units -- 1.5.6 Removing the Mean from the Data Set -- 1.5.7 Frequency Spectrum, Spectrogram, and Power Spectral Density -- 1.5.8 Frequency Filtering -- 1.5.9 Polarization Analysis -- 1.6 Summary of Chapters -- 1.7 Future Developments of Acoustic Measurements in the Ocean -- References -- Chapter 2 Seismic Ambient Noise: Application to Taiwanese Data -- 2.1 Introduction -- 2.2 Background Ambient Seismic Noise in Taiwan -- 2.3 Ambient Seismic Noise Generated by Intense Storms -- 2.4 Deepsea Internal Waves Southeast of Offshore Taiwan -- 2.5 Gas Emissions at the Seafloor and "Bubble" SDEs in SW Offshore Taiwan -- 2.6 Conclusion -- Acknowledgments -- References -- Chapter 3 Seasonal and Geographical Variations in the Quantified Relationship Between Significant Wave Heights and Microseisms: An Example From Taiwan -- 3.1 Introduction -- 3.2 Method and Data Processing -- 3.2.1 Data -- 3.2.2 Method -- 3.3 Testing and Determining Parameters -- 3.4 Results and Discussion. , 3.4.1 Seasonal Variation -- 3.4.2 Geographical Variation -- 3.4.3 Residual Distributions of the SHW Simulation -- 3.5 Conclusions -- Acknowledgments -- References -- Chapter 4 Listening for Diverse Signals From Emergent and Submarine Volcanoes -- 4.1 Introduction -- 4.2 Detection and Monitoring of Submarine Volcanism -- 4.2.1 Hydroacoustic Arrays -- 4.2.2 Seismometer Arrays -- 4.2.3 Cabled Systems -- 4.2.4 Limitations in Detecting Submarine Volcanism -- 4.3 Diverse Volcano Signals Recorded Underwater -- 4.3.1 Distinguishing Signal from Noise in the Ocean -- 4.3.2 High-Frequency Volcanic Signals -- 4.3.3 Low-Frequency Volcanic Signals -- 4.3.4 Volcanic Tremor Signals -- 4.3.5 Volcanic Explosion-Type Signals -- 4.3.6 Volcanic Landslide Signals -- 4.4 Conclusions -- Availability Statement -- Acknowledgments -- References -- Chapter 5 Seismic and Acoustic Monitoring of Submarine Landslides: Ongoing Challenges, Recent Successes, and Future Opportunities -- 5.1 Introduction -- 5.1.1 Recent Advances in Direct Monitoring of Submarine Landslides -- 5.1.2 Aims -- 5.2 Passive Geophysical Monitoring of Terrestrial Landslides -- 5.3 Which Aspects of Submarine Landslides Should We Be Able to Detect with Passive Systems? -- 5.4 Recent Advances and Opportunities in Passive Monitoring of Submarine Landslides -- 5.4.1 Determining the Timing and Location of Submarine Landslides at a Margin Scale Using Land-Based Seismological Networks -- 5.4.2 Quantifying Landslide Kinematics Using Hydrophones -- 5.4.3 Characterizing Landslide Run-Out to Enhance Hazard Assessments -- 5.4.4 Opportunities Using Distributed Cable-Based Sensing -- 5.5 The Application of Passive Geophysical Monitoring in Advancing Submarine Landslide Science. , 5.5.1 Can Passive Seismic and Acoustic Techniques Overcome the Logistical Challenges That Have Previously Hindered the Monitoring of Submarine Landslides? -- 5.5.2 What Aspects of Submarine Landslides Can We Assess from Passive Remote Sensing Techniques, and What Needs To Be Resolved? -- 5.5.3 Suggestions for Future Directions -- 5.6 Concluding Remarks -- Acknowledgments -- References -- Chapter 6 Iceberg Noise -- 6.1 Introduction -- 6.2 Waveforms of Iceberg Noise -- 6.2.1 Iceberg Bursts -- 6.2.2 Iceberg Tremor -- 6.2.3 Iceberg Harmonic Tremor -- 6.3 Observation and Location of Iceberg Noise -- 6.3.1 Hydroacoustic Records at Long Distances -- 6.3.2 Records of Regional Hydroacoustic Networks -- 6.3.3 Seismic Records in Antarctica -- 6.4 Spatial and Temporal Variations of Iceberg Noise -- 6.5 Source Mechanisms of Iceberg Noise -- 6.6 Discussion -- 6.7 Conclusion -- Acknowledgments -- References -- Chapter 7 The Sound of Hydrothermal Vents -- 7.1 Introduction -- 7.2 Theory of Sound Production by Hydrothermal Vents -- 7.2.1 Radiation Efficiency -- 7.2.2 Monopole -- 7.2.3 Dipole -- 7.2.4 Quadrupole -- 7.2.5 Estimated Source Sound Pressure Levels -- 7.2.6 Estimated Source Spectra -- 7.3 Survey of Acoustic Measurements -- 7.3.1 Very Low Frequency (< -- 10 Hz) -- 7.3.2 Narrowband -- 7.3.3 Broadband -- 7.3.4 Tidal Variability -- 7.3.5 Summary of Acoustic Measurements -- 7.4 Other Sources of Ambient Noise -- 7.4.1 Microseisms -- 7.4.2 Local and Teleseismic Events -- 7.4.3 Biological Sources -- 7.4.4 Anthropogenic Sources -- 7.5 Measurement and Analysis Considerations -- 7.5.1 Flow Noise and Coupled Vibration -- 7.5.2 Sound Speed in Hydrothermal Fluid -- 7.5.3 Near Field vs Far Field -- 7.5.4 Hydrophone Array Measurements -- 7.6 Conclusion -- Nomenclature -- References -- Chapter 8 Atypical Signals: Characteristics and Sources of Short-Duration Events. , 8.1 Introduction -- 8.2 Signal Characteristics -- 8.3 Worldwide Distribution of SDEs -- 8.4 Observations and Studies Advancing SDE Understanding -- 8.4.1 Observations from Different Types of Ocean Bottom Instruments -- 8.4.2 Continuous Long-Term, Multidisciplinary Monitoring of Gas Emissions -- 8.4.3 Correlation with Acoustic Monitoring of Gas Emissions -- 8.4.4 Correlation with Earthquakes -- 8.4.5 Correlation with Tides -- 8.4.6 Controlled in situ and Laboratory Experiments -- 8.5 Discussion of SDE Potential Sources -- 8.5.1 Biological Origin -- 8.5.2 Action of Ocean/Sea Currents -- 8.5.3 Fluids in Near-Surface Sediments -- 8.5.4 Low-Magnitude Seismicity -- 8.5.5 Source Modeling -- 8.6 Conclusion -- Acknowledgments -- References -- Chapter 9 Short-Duration Events Associated With Active Seabed Methane Venting: Scanner Pockmark, North Sea -- 9.1 Introduction -- 9.2 Scanner Pockmark Complex -- 9.3 CHIMNEY Seismic Experiment -- 9.4 Methods -- 9.5 Results -- 9.6 Discussion -- 9.6.1 Characteristics of SDEs -- 9.6.2 Spatial Distribution of SDEs -- 9.6.3 Negative Correlation with the Tide -- 9.6.4 Efficiency of SDE Detection -- 9.7 Conclusion -- Acknowledgments -- References -- Chapter 10 Ambient Bubble Acoustics: Seep, Rain, and Wave Noise -- 10.1 Introduction -- 10.2 Bubbles as Acoustic Sources -- 10.2.1 The Injection of a Gas Bubble -- 10.2.2 Bubbles as Simple Harmonic Oscillators -- 10.2.3 Minnaert Frequency -- 10.3 Subsurface Gas Release -- 10.3.1 Gas-Seep Acoustics -- 10.4 Rainfall Acoustics -- 10.5 Acoustics of Breaking Waves -- 10.6 Conclusion -- Further Reading -- Appendix -- Symbology -- References -- Chapter 11 Baleen Whale Vocalizations -- 11.1 Introduction -- 11.1.1 Marine Mammal Classification -- 11.2 Physical Description of Sound and Its Conventions -- 11.2.1 Sound Pressure Level (SPL) -- 11.2.2 Source Level (SL). , 11.2.3 Whale-Sound Analysis -- 11.3 Marine Mammal Vocalizations -- 11.3.1 Sirenia and Carnivora -- 11.3.2 Toothed Whales -- 11.3.3 Baleen Whales -- 11.4 Conclusions -- Acknowledgments -- References -- Chapter 12 Tracking and Monitoring Fin Whales Offshore Northwest Spain Using Passive Acoustic Methods -- 12.1 Introduction -- 12.1.1 Passive Acoustic Monitoring -- 12.1.2 Fin Whale Vocalizations -- 12.1.3 Data Available for This Study -- 12.2 Methods -- 12.2.1 Call Detection -- 12.2.2 Delay Estimation -- 12.2.3 Localization and Tracking -- 12.2.4 Kalman Filter -- 12.3 Results -- 12.3.1 Detections -- 12.3.2 Localization -- 12.3.3 Tracking -- 12.4 Discussion -- 12.5 Conclusions -- Acknowledgments -- References -- Chapter 13 Noise From Marine Traffic -- 13.1 Introduction -- 13.2 Underwater Radiated Noise -- 13.2.1 Sources of Shipping Noise -- 13.2.2 Measuring Radiated Noise -- 13.2.3 Modeling Underwater Radiated Noise -- 13.3 Noise Mapping -- 13.3.1 Modeling Shipping Contributions -- 13.3.2 Source Properties -- 13.3.3 Acoustic Propagation -- 13.3.4 Noise-Mapping Applications -- 13.4 Conclusion -- Acknowledgments -- References -- Chapter 14 Tracking Multiple Underwater Vessels With Passive Sonar Using Beamforming and a Trajectory PHD Filter -- 14.1 Introduction -- 14.2 Narrow-Band Signal Model -- 14.3 Detection via Beamforming and CA-CFAR -- 14.3.1 CBF -- 14.3.2 CA-CFAR -- 14.4 Trajectory PHD Filter for Multiple Underwater Vessels -- 14.4.1 System Model -- 14.4.2 TPHD Filter -- 14.5 Experiments -- 14.5.1 Testing Using Numerical Simulations -- 14.5.2 Testing Using Real-World Experimental Data -- 14.6 Conclusions -- References -- Chapter 15 Deciphering the Submarine Soundscape: New Insights, Broader Implications, Future Directions -- 15.1 Introduction -- 15.2 What WAS Not Included -- 15.3 Further Information -- 15.4 Broader Context. , 15.5 Future Impact and Implications.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Hochschulschrift ; Forschungsbericht
    Type of Medium: Book
    Pages: 98 S , Ill., graph. Darst
    Series Statement: GEOMAR-Report 54
    Language: English
    Note: Zugl.: Kiel, Univ., Diss., 1995
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Dissertation ; Hochschulschrift
    Type of Medium: Book
    Pages: 108 Bl , Ill., graph. Darst
    Language: English
    Note: Kiel, Univ., Diss., 1995
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Underwater acoustics ; Seismic waves
    Description / Table of Contents: "Monitoring Seismic and Acoustic Waves at Sea describes the non-tectonic related seismic signals, show examples of their waveforms, discuss the methodologies allowing to detect and study them, outline their impact and the remaining questions and establish a nomenclature for scientists working on these events, to ease future communications. Studies show examples where NSE's are used for gaining new knowledge in multiple domains of sciences. Volcanic tremors are studied to track the magma movements and used as a successful early warning system to mitigate the volcanic hazard for years. Whale calls recorded on seismic stations are used to track whales and study their habit changes connected to environmental changes. Ambient seismic noise is used to infer the seafloor physical properties. Monochromatic short duration events are suggested to be the expression of fluid migration within the shallow sediments, and they are used for the quantification of local seafloor Methane emission. Case studies show that NSE's allow gaining knowledge in processes involved in climate change. Also, they are used for geo-hazard mitigation. They, therefore, have a huge economic and societal importance."--
    Type of Medium: Book
    Pages: Illustrationen
    ISBN: 9781119750895
    Series Statement: Geophysical monograph series 284
    DDC: 551.46/54
    Language: English
    Note: Includes index
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: Habilitation ; Hochschulschrift
    Type of Medium: Book
    Pages: Getrennte Zählung
    Language: French
    Note: Plouzané, Universite de la Bretagne Occidentale, Habilitation, 2008
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: Dissertation ; Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource ( 104Seiten = 11MB) , Ill., graph. Darst
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-06-20
    Description: We present a detailed 3-D P-wave velocity model obtained by first-arrival travel-time tomography with seismic refraction data in the segment boundary of the Sumatra subduction zone across Simeulue Island, and an image of the top of the subducted oceanic crust extracted from depth-migrated multi-channel seismic reflection profiles. We have picked P-wave first arrivals of the air-gun source seismic data recorded by local networks of ocean-bottom seismometers, and inverted the travel-times for a 3-D velocity model of the subduction zone. This velocity model shows an anomalous zone of intermediate velocities between those of oceanic crust and mantle that is associated with raised topography on the top of the oceanic crust. We interpret this feature as a thickened crustal zone in the subducting plate with compositional and topographic variations, providing a primary control on the upper plate structure and on the segmentation of the 2004 and 2005 earthquake ruptures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  [Talk] In: EGU General Assembly 2012, 22.04.-27.04.2012, Vienna, Austria . Geophysicas Research Abstracts .
    Publication Date: 2012-12-27
    Description: Within Europe there are more than 380 Ocean Bottom Seismometers (OBS) distributed across 10 instrument parks in 6 countries. At least 120 of these OBS are wideband or broadband, over 260 can be deployed for at least 6 months at a time and 140 for at least one year. New parks are planned in two other European countries, which should add over 70 OBSs to this “fleet”. However, these parks are under the control of individual countries or universities and hence to date this has made it difficult to organize large-scale experiments, especially for seismologists without marine experience. There has recently been an initiative to coordinate the use of these distributed instruments and their data products, to encourage large-scale experiments, possibly with onshore and offshore components, by seismologists who have not necessarily used OBSs before. The ongoing or planned developments include: Helping scientists with marine-specific formalities such as ship requests; clearer explanations of the noise floors of OBS instrumentation; improved clarity of instrument pricing and availability; standardized data output formats and data validation; and archiving in established seismological data centers. These efforts should allow improved experiment design in scientifically interesting regions with an offshore component and an easier, clearer way to organize large-scale, multi-country experiments. We will present details of this initiative to help organize large-scale experiments, the particularities of OBS sensors and marine deployments, the available instrumentation and new developments.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-11
    Description: Keypoints This contribution is a reply on a comment submitted by A. Argnani. The alternate interpretation of the wide-angle seismic model is discussed. The Alfeo Fault system is proposed to be the current location of STEP fault. Abstract Andrea Argnani in his comment on Dellong et al., 2020 (Geometry of the deep Calabrian subduction (Central Mediterranean Sea) from wide‐angle seismic data and 3D gravity modeling), proposes an alternate interpretation of the wide-angle seismic velocity models presented by Dellong et al., 2018 and Dellong et al., 2020 and proposes a correction of the literature citations in these paper. In this reply, we discuss in detail all points raised by Andrea Argnani.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-01-15
    Description: Laser reflectometry (BOTDR), commonly used for structural health monitoring (bridges, dams, etc.), for the first time is being tested to study movements of an active fault on the seafloor, 25 km offshore Catania Sicily (an urban area of 1 million people). Under ideal conditions, this technique can measure small strains (10E-6), across very large distances (10 - 200 km) and locate these strains with a spatial resolution of 10 - 50 m. As the first experiment of the European funded FOCUS project (ERC Advanced Grant), in late April 2020 we aimed to connect and deploy a dedicated 6-km long strain cable to the TSS (Test Site South) seafloor observatory in 2100 m water depth operated by INFN-LNS (Italian National Physics Institute). The work plan for the marine expedition FocusX1 onboard the research vessel PourquoiPas? is described here. First, microbathymetric mapping and a video camera survey are performed by the ROV Victor6000. Then, several intermediate junction frames and short connector cables (umbilicals) are connected. A cable-end module and 6-km long fiber-optic strain cable (manufactured by Nexans Norway) is then connected to the new junction box. Next, we use a deep-water cable-laying system with an integrated plow (updated Deep Sea Net design Ifremer, Toulon) to bury the cable 20 cm in the soft sediments in order to increase coupling between the cable and the seafloor. The targeted track for the cable crosses the North Alfeo Fault at three locations. Laser reflectometry measurements began April 2020 and will be calibrated by a three-year deployment of seafloor geodetic instruments (Canopus acoustic beacons manufactured by iXblue) also started April 2020, to quantify relative displacement across the fault. During a future marine expedition, tentatively scheduled for 2021 (FocusX2) a passive seismological experiment is planned to record regional seismicity. This will involve deployment of a temporary network of OBS (Ocean Bottom Seismometers) on the seafloor and seismic stations on land, supplemented by INGV permanent land stations. The simultaneous use of laser reflectometry, seafloor geodetic stations as well as seismological land and sea stations will provide an integrated system for monitoring a wide range of types of slipping events along the North Alfeo Fault (e.g. - creep, slow-slip, rupture). A long-term goal is the development of dual-use telecom cables with industry partners.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...