GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-01-05
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-31
    Description: By means of a variety of international observing and modeling efforts, the ocean carbon community has developed several independent estimates for ocean carbon uptake. In this presentation, we report on the synthesis effort we are undertaking under the auspices of an Ocean Carbon and Biogeochemistry Working Group. Our initial goal for this working group is to determine the best estimate for the net and anthropogenic carbon sink from 1994-2007, and then to infer the total magnitude of the poorly quantified fluxes that constitute their difference. Estimates for the net, or contemporary, ocean carbon uptake are derived from surface ocean pCO2 data interpolated to global coverage. From 4 of these products, we find Fnet = -1.7 PgC/yr for 1994-2007. Estimates for uptake of anthropogenic carbon comes from (1) interior observations of dissolved inorganic carbon and other tracers, (2) an ocean model constrained with observations, and (3) a suite of nine free-running ocean hindcast models in which the natural carbon cycle is assumed to be in a long-term steady state. Fant = -2.3 PgC/yr from the mean of these approaches. The difference between these two estimates is -0.6 PgC/yr, and acts as a quantitative constraint on the sum of the additional fluxes. As coastal zones and the Arctic are additional net carbon sinks, the sum of outgassed river-derived carbon, skin temperature effects on air-sea CO2 exchange, and non-steady state natural carbon fluxes in the open ocean can be no larger than a few tenths of PgC/yr. Our presentation details the uncertainties and assumptions made in deriving these estimates, and suggests paths forward to further reduce uncertainties.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-09-19
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-02-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-04-27
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 13 (2016): 5065-5083, doi:10.5194/bg-13-5065-2016.
    Description: One of the major challenges to assessing the impact of ocean acidification on marine life is detecting and interpreting long-term change in the context of natural variability. This study addresses this need through a global synthesis of monthly pH and aragonite saturation state (Ωarag) climatologies for 12 open ocean, coastal, and coral reef locations using 3-hourly moored observations of surface seawater partial pressure of CO2 and pH collected together since as early as 2010. Mooring observations suggest open ocean subtropical and subarctic sites experience present-day surface pH and Ωarag conditions outside the bounds of preindustrial variability throughout most, if not all, of the year. In general, coastal mooring sites experience more natural variability and thus, more overlap with preindustrial conditions; however, present-day Ωarag conditions surpass biologically relevant thresholds associated with ocean acidification impacts on Mytilus californianus (Ωarag 〈 1.8) and Crassostrea gigas (Ωarag 〈 2.0) larvae in the California Current Ecosystem (CCE) and Mya arenaria larvae in the Gulf of Maine (Ωarag 〈 1.6). At the most variable mooring locations in coastal systems of the CCE, subseasonal conditions approached Ωarag =  1. Global and regional models and data syntheses of ship-based observations tended to underestimate seasonal variability compared to mooring observations. Efforts such as this to characterize all patterns of pH and Ωarag variability and change at key locations are fundamental to assessing present-day biological impacts of ocean acidification, further improving experimental design to interrogate organism response under real-world conditions, and improving predictive models and vulnerability assessments seeking to quantify the broader impacts of ocean acidification.
    Description: The CO2 and ocean acidification observations were funded by NOAA’s Climate Observation Division (COD) in the Climate Program Office and NOAA’s Ocean Acidification Program. The maintenance of the Stratus and WHOTS Ocean Reference Stations were also supported by NOAA COD (NA09OAR4320129). Additional support for buoy equipment, maintenance, and/or ancillary measurements was provided by NOAA through the US Integrated Ocean Observing System office: for the La Parguera buoy under a Cooperative Agreement (NA11NOS0120035) with the Caribbean Coastal Ocean Observing System, for the Chá b˘a buoy under a Cooperative Agreement (NA11NOS0120036) with the Northwest Association of Networked Ocean Observing System, for the Gray’s Reef buoy under a Cooperative Agreement (NA11NOS0120033) with the Southeast Coastal Ocean Observing Regional Association, and for the Gulf of Main buoy under a Cooperative Agreement (NA11NOS0120034) with the Northeastern Regional Association of Coastal and Ocean Observing Systems.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 44 (2017): 5627–5636, doi:10.1002/2017GL073814.
    Description: Variability and change in the ocean sink of anthropogenic carbon dioxide (CO2) have implications for future climate and ocean acidification. Measurements of surface seawater CO2 partial pressure (pCO2) and wind speed from moored platforms are used to calculate high-resolution CO2 flux time series. Here we use the moored CO2 fluxes to examine variability and its drivers over a range of time scales at four locations in the Pacific Ocean. There are significant surface seawater pCO2, salinity, and wind speed trends in the North Pacific subtropical gyre, especially during winter and spring, which reduce CO2 uptake over the 10 year record of this study. Starting in late 2013, elevated seawater pCO2 values driven by warm anomalies cause this region to be a net annual CO2 source for the first time in the observational record, demonstrating how climate forcing can influence the timing of an ocean region shift from CO2 sink to source.
    Description: NOAA, OAR, CPO, OOMD Grant Number: 100007298; NOAA, OAR, CPO, OOMD Grant Number: NA09OAR4320129; Ocean Observation and Monitoring Division (OOMD) Grant Number: NA09OAR4320129; National Oceanic and Atmospheric Administration (NOAA) Grant Number: 100007298
    Description: 2017-12-12
    Keywords: Sea-air CO2 flux ; Surface ocean pCO2 ; Ocean carbon ; Anthropogenic change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth System Science Data 7 (2015): 349–396, doi:10.5194/essd-7-349-2015.
    Description: Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2005–2014), EFF was 9.0 ± 0.5 GtC yr−1, ELUC was 0.9 ± 0.5 GtC yr−1, GATM was 4.4 ± 0.1 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1, and SLAND was 3.0 ± 0.8 GtC yr−1. For the year 2014 alone, EFF grew to 9.8 ± 0.5 GtC yr−1, 0.6 % above 2013, continuing the growth trend in these emissions, albeit at a slower rate compared to the average growth of 2.2 % yr−1 that took place during 2005–2014. Also, for 2014, ELUC was 1.1 ± 0.5 GtC yr−1, GATM was 3.9 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1, and SLAND was 4.1 ± 0.9 GtC yr−1. GATM was lower in 2014 compared to the past decade (2005–2014), reflecting a larger SLAND for that year. The global atmospheric CO2 concentration reached 397.15 ± 0.10 ppm averaged over 2014. For 2015, preliminary data indicate that the growth in EFF will be near or slightly below zero, with a projection of −0.6 [range of −1.6 to +0.5] %, based on national emissions projections for China and the USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the global economy for the rest of the world. From this projection of EFF and assumed constant ELUC for 2015, cumulative emissions of CO2 will reach about 555 ± 55 GtC (2035 ± 205 GtCO2) for 1870–2015, about 75 % from EFF and 25 % from ELUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quéré et al., 2015, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2015).
    Description: NERC provided funding to C. Le Quéré, R. Moriarty, and the GCP through their International Opportunities Fund specifically to support this publication (NE/103002X/1). G. P. Peters and R. M. Andrew were supported by the Norwegian Research Council (236296). J. G. Canadell was supported by the Australian Climate Change Science Programme. S. Sitch was supported by EU FP7 for funding through projects LUC4C (GA603542). R. J. Andres was supported by US Department of Energy, Office of Science, Biological and Environmental Research (BER) programmes under US Department of Energy contract DE-AC05- 00OR22725. T. A. Boden was supported by US Department of Energy, Office of Science, Biological and Environmental Research (BER) programmes under US Department of Energy contract DE-AC05-00OR22725. J. I. House was supported by the Leverhulme foundation and the EU FP7 through project LUC4C (GA603542). P. Friedlingstein was supported by the EU FP7 for funding through projects LUC4C (GA603542) and EMBRACE (GA282672). A. Arneth was supported by the EU FP7 for funding through LUC4C (603542), and the Helmholtz foundation and its ATMO programme. D. C. E. Bakker was supported by the EU FP7 for funding through project CARBOCHANGE (284879), the UK Ocean Acidification Research Programme (NE/H017046/1; funded by the Natural Environment Research Council, the Department for Energy and Climate Change and the Department for Environment, Food and Rural Affairs). L. Barbero was supported by NOAA’s Ocean Acidification Program and acknowledges support for this work from the National Aeronautics and Space Administration (NASA) ROSES Carbon Cycle Science under NASA grant 13-CARBON13_2-0080. P. Ciais acknowledges support from the European Research Council through Synergy grant ERC-2013-SyG-610028 “IMBALANCE-P”. M. Fader was supported by the EU FP7 for funding through project LUC4C (GA603542). J. Hauck was supported by the Helmholtz Postdoc Programme (Initiative and Networking Fund of the Helmholtz Association). R. A. Feely and A. J. Sutton were supported by the Climate Observation Division, Climate Program Office, NOAA, US Department of Commerce. A. K. Jain was supported by the US National Science Foundation (NSF AGS 12-43071) the US Department of Energy, Office of Science and BER programmes (DOE DE-SC0006706) and NASA LCLUC programme (NASA NNX14AD94G). E. Kato was supported by the ERTDF (S-10) from the Ministry of Environment, Japan. K. Klein Goldewijk was supported by the Dutch NWO VENI grant no. 863.14.022. S. K. Lauvset was supported by the project “Monitoring ocean acidification in Norwegian waters” from the Norwegian Ministry of Climate and Environment. V. Kitidis was supported by the EU FP7 for funding through project CARBOCHANGE (264879). C. Koven was supported by the Director, Office of Science, Office of Biological and Environmental Research of the US Department of Energy under contract no. DE-AC02-05CH11231 as part of their Regional and Global Climate Modeling Program. P. Landschützer was supported by GEOCarbon. I. T. van der Lann-Luijkx received financial support from OCW/NWO for ICOS-NL and computing time from NWO (SH-060-13). I. D. Lima was supported by the US National Science Foundation (NSF AGS-1048827). N. Metzl was supported by Institut National des Sciences de l’Univers (INSU) and Institut Paul Emile Victor (IPEV) for OISO cruises. D. R. Munro was supported by the US National Science Foundation (NSF PLR-1341647 and NSF AOAS-0944761). J. E. M. S. Nabel was supported by the German Research Foundation’s Emmy Noether Programme (PO1751/1-1) and acknowledges Julia Pongratz and Kim Naudts for their contributions. Y. Nojiri and S. Nakaoka were supported by the Global Environment Research Account for National Institutes (1432) by the Ministry of Environment of Japan. A. Olsen appreciates support from the Norwegian Research Council (SNACS, 229752). F. F. Pérez were supported by BOCATS (CTM2013-41048-P) project co-founded by the Spanish government and the Fondo Europeo de Desarrollo Regional (FEDER). B. Pfeil was supported through the European Union’s Horizon 2020 research and innovation programme AtlantOS under grant agreement no. 633211. D. Pierrot was supported by NOAA through the Climate Observation Division of the Climate Program Office. B. Poulter was supported by the EU FP7 for funding through GEOCarbon. G. Rehder was supported by BMBF (Bundesministerium für Bildung und Forschung) through project ICOS, grant no. 01LK1224D. U. Schuster was supported by NERC UKOARP (NE/H017046/1), NERC RAGANRoCC (NE/K002473/1), the European Space Agency (ESA) OceanFlux Evolution project, and EU FP7 CARBOCHANGE (264879). T. Steinhoff was supported by ICOS-D (BMBF FK 01LK1101C) and EU FP7 for funding through project CARBOCHANGE (264879). J. Schwinger was supported by the Research Council of Norway through project EVA (229771), and acknowledges the Norwegian Metacenter for Computational Science (NOTUR, project nn2980k), and the Norwegian Storage Infrastructure (NorStore, project ns2980k) for supercomputer time and storage resources. T. Takahashi was supported by grants from NOAA and the Comer Education and Science Foundation. B. Tilbrook was supported by the Australian Department of Environment and the Integrated Marine Observing System. B. D. Stocker was supported by the Swiss National Science Foundation and FP7 funding through project EMBRACE (282672). S. van Heuven was supported by the EU FP7 for funding through project CARBOCHANGE (264879). G. R. van der Werf was supported by the European Research Council (280061). A. Wiltshire was supported by the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101) and EU FP7 Funding through project LUC4C (603542). S. Zaehle was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (QUINCY; grant agreement no. 647204). ISAM (PI: Atul K. Jain) simulations were carried out at the National Energy Research Scientific Computing Center (NERSC), which is supported by the US DOE under contract DE-AC02-05CH11231.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Smith, N., Kessler, W. S., Cravatte, S., Sprintall, J., Wijffels, S., Cronin, M. F., Sutton, A., Serra, Y. L., Dewitte, B., Strutton, P. G., Hill, K., Sen Gupta, A., Lin, X., Takahashi, K., Chen, D., & Brunner, S. Tropical pacific observing system. Frontiers in Marine Science, 6, (2019):31, doi:10.3389/fmars.2019.00031.
    Description: This paper reviews the design of the Tropical Pacific Observing System (TPOS) and its governance and takes a forward look at prospective change. The initial findings of the TPOS 2020 Project embrace new strategic approaches and technologies in a user-driven design and the variable focus of the Framework for Ocean Observing. User requirements arise from climate prediction and research, climate change and the climate record, and coupled modeling and data assimilation more generally. Requirements include focus on the upper ocean and air-sea interactions, sampling of diurnal variations, finer spatial scales and emerging demands related to biogeochemistry and ecosystems. One aim is to sample a diversity of climatic regimes in addition to the equatorial zone. The status and outlook for meeting the requirements of the design are discussed. This is accomplished through integrated and complementary capabilities of networks, including satellites, moorings, profiling floats and autonomous vehicles. Emerging technologies and methods are also discussed. The outlook highlights a few new foci of the design: biogeochemistry and ecosystems, low-latitude western boundary currents and the eastern Pacific. Low latitude western boundary currents are conduits of tropical-subtropical interactions, supplying waters of mid to high latitude origin to the western equatorial Pacific and into the Indonesian Throughflow. They are an essential part of the recharge/discharge of equatorial warm water volume at interannual timescales and play crucial roles in climate variability on regional and global scales. The tropical eastern Pacific, where extreme El Niño events develop, requires tailored approaches owing to the complex of processes at work there involving coastal upwelling, and equatorial cold tongue dynamics, the oxygen minimum zone and the seasonal double Intertropical Convergence Zone. A pilot program building on existing networks is envisaged, complemented by a process study of the East Pacific ITCZ/warm pool/cold tongue/stratus coupled system. The sustainability of TPOS depends on effective and strong collaborative partnerships and governance arrangements. Revisiting regional mechanisms and engaging new partners in the context of a planned and systematic design will ensure a multi-purpose, multi-faceted integrated approach that is sustainable and responsive to changing needs.
    Description: BD thanks LEFE-GMMC for financial support. JS participation in this study was supported by NOAA’s Global Ocean Monitoring and Observing Program through Award NA15OAR4320071. NOAA’s Ocean Observing and Monitoring Division has supported NS and WK and the TPOS 2020 Distributed Project Office.
    Keywords: Ocean observing ; Tropical Pacific ; TPOS 2020 ; User requirements ; Variable requirements ; Design ; Tropical moorings
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Todd, R. E., Chavez, F. P., Clayton, S., Cravatte, S., Goes, M., Greco, M., Ling, X., Sprintall, J., Zilberman, N., V., Archer, M., Aristegui, J., Balmaseda, M., Bane, J. M., Baringer, M. O., Barth, J. A., Beal, L. M., Brandt, P., Calil, P. H. R., Campos, E., Centurioni, L. R., Chidichimo, M. P., Cirano, M., Cronin, M. F., Curchitser, E. N., Davis, R. E., Dengler, M., deYoung, B., Dong, S., Escribano, R., Fassbender, A. J., Fawcett, S. E., Feng, M., Goni, G. J., Gray, A. R., Gutierrez, D., Hebert, D., Hummels, R., Ito, S., Krug, M., Lacan, F., Laurindo, L., Lazar, A., Lee, C. M., Lengaigne, M., Levine, N. M., Middleton, J., Montes, I., Muglia, M., Nagai, T., Palevsky, H., I., Palter, J. B., Phillips, H. E., Piola, A., Plueddemann, A. J., Qiu, B., Rodrigues, R. R., Roughan, M., Rudnick, D. L., Rykaczewski, R. R., Saraceno, M., Seim, H., Sen Gupta, A., Shannon, L., Sloyan, B. M., Sutton, A. J., Thompson, L., van der Plas, A. K., Volkov, D., Wilkin, J., Zhang, D., & Zhang, L. Global perspectives on observing ocean boundary current systems. Frontiers in Marine Science, 6, (2010); 423, doi: 10.3389/fmars.2019.00423.
    Description: Ocean boundary current systems are key components of the climate system, are home to highly productive ecosystems, and have numerous societal impacts. Establishment of a global network of boundary current observing systems is a critical part of ongoing development of the Global Ocean Observing System. The characteristics of boundary current systems are reviewed, focusing on scientific and societal motivations for sustained observing. Techniques currently used to observe boundary current systems are reviewed, followed by a census of the current state of boundary current observing systems globally. The next steps in the development of boundary current observing systems are considered, leading to several specific recommendations.
    Description: RT was supported by The Andrew W. Mellon Foundation Endowed Fund for Innovative Research at WHOI. FC was supported by the David and Lucile Packard Foundation. MGo was funded by NSF and NOAA/AOML. XL was funded by China’s National Key Research and Development Projects (2016YFA0601803), the National Natural Science Foundation of China (41490641, 41521091, and U1606402), and the Qingdao National Laboratory for Marine Science and Technology (2017ASKJ01). JS was supported by NOAA’s Global Ocean Monitoring and Observing Program (Award NA15OAR4320071). DZ was partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063. BS was supported by IMOS and CSIRO’s Decadal Climate Forecasting Project. We gratefully acknowledge the wide range of funding sources from many nations that have enabled the observations and analyses reviewed here.
    Keywords: Western boundary current systems ; Eastern boundary current systems ; Ocean observing systems ; Time series ; Autonomous underwater gliders ; Drifters ; Remote sensing ; Moorings
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...