GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Freeman, Natalie M; Lovenduski, Nicole S (2016): Mapping the Antarctic Polar Front: weekly realizations from 2002 to 2014. Earth System Science Data, 8(1), 191-198, https://doi.org/10.5194/essd-8-191-2016
    Publication Date: 2023-05-12
    Description: We map the weekly position of the Antarctic Polar Front (PF) in the Southern Ocean over a 12-year period (2002–2014) using satellite sea surface temperature (SST) estimated from cloud-penetrating microwave radiometers. Our study advances previous efforts to map the PF using hydrographic and satellite data and provides a unique realization of the PF at weekly resolution across all longitudes. The mean path of the PF is asymmetric; its latitudinal position spans from 44 to 64° S along its circumpolar path. SST at the PF ranges from 0.6 to 6.9 °C, reflecting the large spread in latitudinal position. The average intensity of the front is 1.7 °C per 100 km, with intensity ranging from 1.4 to 2.3 °C per 100 km. Front intensity is significantly correlated with the depth of bottom topography, suggesting that the front intensifies over shallow bathymetry. Realizations of the PF are consistent with the corresponding surface expressions of the PF estimated using expendable bathythermograph data in the Drake Passage and Australian and African sectors. The climatological mean position of the PF is similar, though not identical, to previously published estimates. As the PF is a key indicator of physical circulation, surface nutrient concentration, and biogeography in the Southern Ocean, future studies of physical and biogeochemical oceanography in this region will benefit from the provided data set.
    Keywords: File content; File format; File size; Uniform resource locator/link to raw data file
    Type: Dataset
    Format: text/tab-separated-values, 8 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    IPCC
    In:  In: Climate Change 2021: The Physical Science Basis: Contribution of Working Group I to the Sixth : Assessment Report of the Intergovernmental Panel on Climate Change : Chapter 5. , ed. by Masson-Delmotte, V., Zhai, P., Pirani, A., Conners, S. L., Pean, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekci, O., Yu, R. and Zhou, B. IPCC, Genf, Switzerland, pp. 1-221.
    Publication Date: 2022-01-06
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-31
    Description: By means of a variety of international observing and modeling efforts, the ocean carbon community has developed several independent estimates for ocean carbon uptake. In this presentation, we report on the synthesis effort we are undertaking under the auspices of an Ocean Carbon and Biogeochemistry Working Group. Our initial goal for this working group is to determine the best estimate for the net and anthropogenic carbon sink from 1994-2007, and then to infer the total magnitude of the poorly quantified fluxes that constitute their difference. Estimates for the net, or contemporary, ocean carbon uptake are derived from surface ocean pCO2 data interpolated to global coverage. From 4 of these products, we find Fnet = -1.7 PgC/yr for 1994-2007. Estimates for uptake of anthropogenic carbon comes from (1) interior observations of dissolved inorganic carbon and other tracers, (2) an ocean model constrained with observations, and (3) a suite of nine free-running ocean hindcast models in which the natural carbon cycle is assumed to be in a long-term steady state. Fant = -2.3 PgC/yr from the mean of these approaches. The difference between these two estimates is -0.6 PgC/yr, and acts as a quantitative constraint on the sum of the additional fluxes. As coastal zones and the Arctic are additional net carbon sinks, the sum of outgassed river-derived carbon, skin temperature effects on air-sea CO2 exchange, and non-steady state natural carbon fluxes in the open ocean can be no larger than a few tenths of PgC/yr. Our presentation details the uncertainties and assumptions made in deriving these estimates, and suggests paths forward to further reduce uncertainties.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-05-04
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 21 (2007): GB2026, doi:10.1029/2006GB002900.
    Description: We investigate the interannual variability in the flux of CO2 between the atmosphere and the Southern Ocean on the basis of hindcast simulations with a coupled physical-biogeochemical-ecological model with particular emphasis on the role of the Southern Annular Mode (SAM). The simulations are run under either pre-industrial or historical CO2 concentrations, permitting us to separately investigate natural, anthropogenic, and contemporary CO2 flux variability. We find large interannual variability (±0.19 PgC yr−1) in the contemporary air-sea CO2 flux from the Southern Ocean (〈35°S). Forty-three percent of the contemporary air-sea CO2 flux variance is coherent with SAM, mostly driven by variations in the flux of natural CO2, for which SAM explains 48%. Positive phases of the SAM are associated with anomalous outgassing of natural CO2 at a rate of 0.1 PgC yr−1 per standard deviation of the SAM. In contrast, we find an anomalous uptake of anthropogenic CO2 at a rate of 0.01 PgC yr−1 during positive phases of the SAM. This uptake of anthropogenic CO2 only slightly mitigates the outgassing of natural CO2, so that a positive SAM is associated with anomalous outgassing in contemporaneous times. The primary cause of the natural CO2 outgassing is anomalously high oceanic partial pressures of CO2 caused by elevated dissolved inorganic carbon (DIC) concentrations. These anomalies in DIC are primarily a result of the circulation changes associated with the southward shift and strengthening of the zonal winds during positive phases of the SAM. The secular, positive trend in the SAM has led to a reduction in the rate of increase of the uptake of CO2 by the Southern Ocean over the past 50 years.
    Description: This work was supported by NASA headquarters under the Earth System Science Fellowship Grant NNG05GP78H to N. S. L. and grants NAG5-12528 and NNG04GH53G to N. G. Both S. C. D. and I. D. L. were supported by NSF/ONR NOPP (N000140210370) and NASA (NNG05GG30G).
    Keywords: Southern Ocean ; Carbon cycle ; Southern Annular Mode
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 22 (2008): GB3016, doi:10.1029/2007GB003139.
    Description: We investigate the multidecadal and decadal trends in the flux of CO2 between the atmosphere and the Southern Ocean using output from hindcast simulations of an ocean circulation model with embedded biogeochemistry. The simulations are run with NCEP-1 forcing under both preindustrial and historical atmospheric CO2 concentrations so that we can separately analyze trends in the natural and anthropogenic CO2 fluxes. We find that the Southern Ocean (〈35°S) CO2 sink has weakened by 0.1 Pg C a−1 from 1979–2004, relative to the expected sink from rising atmospheric CO2 and fixed physical climate. Although the magnitude of this trend is in agreement with prior studies (Le Quéré et al., 2007), its size may not be entirely robust because of uncertainties associated with the trend in the NCEP-1 atmospheric forcing. We attribute the weakening sink to an outgassing trend of natural CO2, driven by enhanced upwelling and equatorward transport of carbon-rich water, which are caused by a trend toward stronger and southward shifted winds over the Southern Ocean (associated with the positive trend in the Southern Annular Mode (SAM)). In contrast, the trend in the anthropogenic CO2 uptake is largely unaffected by the trend in the wind and ocean circulation. We regard this attribution of the trend as robust, and show that surface and interior ocean observations may help to solidify our findings. As coupled climate models consistently show a positive trend in the SAM in the coming century [e.g., Meehl et al., 2007], these mechanistic results are useful for projecting the future behavior of the Southern Ocean carbon sink.
    Description: This work was supported by funding from various agencies. NSL was supported by NASA grant NNG05GP78H and the NOAA Climate and Global Change postdoctoral fellowship. NG was supported by NASA grant NNG04GH53G and by ETH Zurich. SCD was supported by NASA grant NNG05GG30G.
    Keywords: Southern Ocean ; Southern Annular Mode ; Ocean carbon sink
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/postscript
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 19 (2013): 4037-4054, doi:10.5194/bg-10-4037-2013.
    Description: The Southern Ocean (44–75° S) plays a critical role in the global carbon cycle, yet remains one of the most poorly sampled ocean regions. Different approaches have been used to estimate sea–air CO2 fluxes in this region: synthesis of surface ocean observations, ocean biogeochemical models, and atmospheric and ocean inversions. As part of the RECCAP (REgional Carbon Cycle Assessment and Processes) project, we combine these different approaches to quantify and assess the magnitude and variability in Southern Ocean sea–air CO2 fluxes between 1990–2009. Using all models and inversions (26), the integrated median annual sea–air CO2 flux of −0.42 ± 0.07 Pg C yr−1 for the 44–75° S region, is consistent with the −0.27 ± 0.13 Pg C yr−1 calculated using surface observations. The circumpolar region south of 58° S has a small net annual flux (model and inversion median: −0.04 ± 0.07 Pg C yr−1 and observations: +0.04 ± 0.02 Pg C yr−1), with most of the net annual flux located in the 44 to 58° S circumpolar band (model and inversion median: −0.36 ± 0.09 Pg C yr−1 and observations: −0.35 ± 0.09 Pg C yr−1). Seasonally, in the 44–58° S region, the median of 5 ocean biogeochemical models captures the observed sea–air CO2 flux seasonal cycle, while the median of 11 atmospheric inversions shows little seasonal change in the net flux. South of 58° S, neither atmospheric inversions nor ocean biogeochemical models reproduce the phase and amplitude of the observed seasonal sea–air CO2 flux, particularly in the Austral Winter. Importantly, no individual atmospheric inversion or ocean biogeochemical model is capable of reproducing both the observed annual mean uptake and the observed seasonal cycle. This raises concerns about projecting future changes in Southern Ocean CO2 fluxes. The median interannual variability from atmospheric inversions and ocean biogeochemical models is substantial in the Southern Ocean; up to 25% of the annual mean flux, with 25% of this interannual variability attributed to the region south of 58° S. Resolving long-term trends is difficult due to the large interannual variability and short time frame (1990–2009) of this study; this is particularly evident from the large spread in trends from inversions and ocean biogeochemical models. Nevertheless, in the period 1990–2009 ocean biogeochemical models do show increasing oceanic uptake consistent with the expected increase of −0.05 Pg C yr−1 decade−1. In contrast, atmospheric inversions suggest little change in the strength of the CO2 sink broadly consistent with the results of Le Quéré et al. (2007).
    Description: A. Lenton, B. Tilbrook, R. J. Matear and R. M. Law were funded by the Australian Climate Change Science Program and theWealth from Oceans National Research Flagship. S. C. Doney acknowledges support from the National Science Foundation (OPP-0823101), T. Takahashi is supported by grants from United States NOAA (NA08OAR4320754) and National Science Foundation (ANT 06-36879). D. Baker, N. Gruber, M. Hoppema, N. Metzl acknowledge the support of EU FP7 project CARBOCHANGE (264879). S. C. Doney acknowledges support from the National Science Foundation (OPP-0823101). N. S. Lovenduski is grateful for support from NSF (OCE-1155240) and NOAA (NA12OAR4310058). This study is also a contribution to the international IMBER/SOLAS Projects. C. Sweeney acknowledges support from the United States NOAA (NA12OAR4310058) and National Science Foundation (0944761).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Springer Science and Business Media LLC
    In:  EPIC3Nature Communications, Springer Science and Business Media LLC, 15(1), ISSN: 2041-1723
    Publication Date: 2024-01-06
    Description: Antarctic coastal waters are home to several established or proposed Marine Protected Areas (MPAs) supporting exceptional biodiversity. Despite being threatened by anthropogenic climate change, uncertainties remain surrounding the future ocean acidification (OA) of these waters. Here we present 21st-century projections of OA in Antarctic MPAs under four emission scenarios using a high-resolution ocean–sea ice–biogeochemistry model with realistic ice-shelf geometry. By 2100, we project pH declines of up to 0.36 (total scale) for the top 200 m. Vigorous vertical mixing of anthropogenic carbon produces severe OA throughout the water column in coastal waters of proposed and existing MPAs. Consequently, end-of-century aragonite undersaturation is ubiquitous under the three highest emission scenarios. Given the cumulative threat to marine ecosystems by environmental change and activities such as fishing, our findings call for strong emission-mitigation efforts and further management strategies to reduce pressures on ecosystems, such as the continuation and expansion of Antarctic MPAs.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Capotondi, A., Jacox, M., Bowler, C., Kavanaugh, M., Lehodey, P., Barrie, D., Brodie, S., Chaffron, S., Cheng, W., Dias, D. F., Eveillard, D., Guidi, L., Iudicone, D., Lovenduski, N. S., Nye, J. A., Ortiz, I., Pirhalla, D., Buil, M. P., Saba, V., Sheridan, S., Siedlecki, S., Subramanian, A., de Vargas, C., Di Lorenzo, E., Doney, S. C., Hermann, A. J., Joyce, T., Merrifield, M., Miller, A. J., Not, F., & Pesant, S. Observational needs supporting marine ecosystems modeling and forecasting: from the global ocean to regional and coastal systems. Frontiers in Marine Science, 6, (2019): 623, doi:10.3389/fmars.2019.00623.
    Description: Many coastal areas host rich marine ecosystems and are also centers of economic activities, including fishing, shipping and recreation. Due to the socioeconomic and ecological importance of these areas, predicting relevant indicators of the ecosystem state on sub-seasonal to interannual timescales is gaining increasing attention. Depending on the application, forecasts may be sought for variables and indicators spanning physics (e.g., sea level, temperature, currents), chemistry (e.g., nutrients, oxygen, pH), and biology (from viruses to top predators). Many components of the marine ecosystem are known to be influenced by leading modes of climate variability, which provide a physical basis for predictability. However, prediction capabilities remain limited by the lack of a clear understanding of the physical and biological processes involved, as well as by insufficient observations for forecast initialization and verification. The situation is further complicated by the influence of climate change on ocean conditions along coastal areas, including sea level rise, increased stratification, and shoaling of oxygen minimum zones. Observations are thus vital to all aspects of marine forecasting: statistical and/or dynamical model development, forecast initialization, and forecast validation, each of which has different observational requirements, which may be also specific to the study region. Here, we use examples from United States (U.S.) coastal applications to identify and describe the key requirements for an observational network that is needed to facilitate improved process understanding, as well as for sustaining operational ecosystem forecasting. We also describe new holistic observational approaches, e.g., approaches based on acoustics, inspired by Tara Oceans or by landscape ecology, which have the potential to support and expand ecosystem modeling and forecasting activities by bridging global and local observations.
    Description: This study was supported by the NOAA’s Climate Program Office’s Modeling, Analysis, Predictions, and Projections (MAPP) Program through grants NA17OAR4310106, NA17OAR4310104, NA17OAR4310108, NA17OAR4310109, NA17OAR4310110, NA17OAR4310111, NA17OAR4310112, and NA17OAR4310113. This manuscript is a product of the NOAA/MAPP Marine Prediction Task Force. The Tara Oceans consortium acknowledges support from the CNRS Research Federation FR2022 Global Ocean Systems Ecology and Evolution, and OCEANOMICS (grant agreement ‘Investissement d’Avenir’ ANR-11-BTBR-0008). This is article number 95 of the Tara Oceans consortium. MK and SD acknowledge support from NASA grant NNX14AP62A “National Marine Sanctuaries as Sentinel Sites for a Demonstration Marine Biodiversity Observation Network (MBON)” funded under the National Ocean Partnership Program (NOPP RFP NOAA-NOS-IOOS-2014-2003803 in partnership between NOAA, BOEM, and NASA), and the NOAA Integrated Ocean Observing System (IOOS) Program Office. WC, IO, and AH acknowledge partial support from the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063, Contribution No. 2019-1029. This study received support from the European H2020 International Cooperation project MESOPP (Mesopelagic Southern Ocean Prey and Predators), grant agreement no. 692173.
    Keywords: Marine ecosystems ; Modeling and forecasting ; Seascapes ; Genetics ; Acoustics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-17
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 48(19), (2021): e2021GL095088, https://doi.org/10.1029/2021GL095088.
    Description: The physical circulation of the Southern Ocean sets the surface concentration and thus air-sea exchange of CO2. However, we have a limited understanding of the three-dimensional circulation that brings deep carbon-rich waters to the surface. Here, we introduce and analyze a novel high-resolution ocean model simulation with active biogeochemistry and online Lagrangian particle tracking. We focus our attention on a subset of particles with high dissolved inorganic carbon (DIC) that originate below 1,000 m and eventually upwell into the near-surface layer (upper 200 m). We find that 71% of the DIC-enriched water upwelling across 1,000 m is concentrated near topographic features, which occupy just 33% of the Antarctic Circumpolar Current. Once particles upwell to the near-surface layer, they exhibit relatively uniform pCO2 levels and DIC decorrelation timescales, regardless of their origin. Our results show that Southern Ocean bathymetry plays a key role in delivering carbon-rich waters to the surface.
    Description: Riley X. Brady was supported by the Department of Energy's Computational Science Graduate Fellowship (DE-FG02-97ER25308), and particularly benefited from the fellowship's summer practicum at Los Alamos National Lab. Nicole S. Lovenduski and Riley X. Brady were further supported by the U.S. Department of Energy Biological and Environmental Research program (DE-SC0022243) and by the National Science Foundation (NSF-PLR 1543457; NSF-OCE 1924636; NSF-OCE 1752724; NSF-OCE 1558225). Mathew E. Maltrud and Phillip J. Wolfram were supported as part of the Energy Exascale Earth System Model (E3SM) project, funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research. This research used resources provided by the Los Alamos National Laboratory Institutional Computing Program, which is supported by the U.S. Department of Energy National Nuclear Security Administration under Contract No. 89233218CNA000001.
    Keywords: Southern Ocean ; Carbon cycle ; Upwelling ; Lagrangian modeling ; Ocean biogeochemistry ; Climate modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...