GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Publication Date: 2023-01-27
    Description: Dissolved organic matter (DOM) is the largest organic carbon reservoir in the ocean and an integral component of biogeochemical cycles. The role of free‐living microbes in DOM transformation has been studied thoroughly, whereas little attention has been directed towards the influence of benthic organisms. Sponges are efficient filter feeders and common inhabitants of many benthic communities circumglobally. Here, we investigated how two tropical coral reef sponges shape marine DOM. We compared bacterial abundance, inorganic and organic nutrients in off reef, sponge inhalant, and sponge exhalant water of Melophlus sarasinorum and Rhabdastrella globostellata. DOM and bacterial cells were taken up, and dissolved inorganic nitrogen was released by the two Indo‐Pacific sponges. Both sponge species utilized a common set of 142 of a total of 3040 compounds detected in DOM on a molecular formula level via ultrahigh‐resolution mass spectrometry. In addition, species‐specific uptake was observed, likely due to differences in their associated microbial communities. Overall, the sponges removed presumably semi‐labile and semi‐refractory compounds from the water column, thereby competing with pelagic bacteria. Within minutes, sponge holobionts altered the molecular composition of surface water DOM (inhalant) into a composition similar to deep‐sea DOM (exhalent). The apparent radiocarbon age of DOM increased consistently from off reef and inhalant to exhalant by about 900 14C years for M. sarasinorum. In the pelagic, similar transformations require decades to centuries. Our results stress the dependence of DOM lability definition on the respective environment and illustrate that sponges are hotspots of DOM transformation in the ocean.
    Description: Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg
    Description: Ministry for Science and Culture of Lower Saxony http://dx.doi.org/10.13039/501100010570
    Description: Carl‐von‐Ossietzky University Oldenburg
    Description: Alfred‐Wegener‐Institute, Helmholtz‐Center for Polar and Marine Research
    Description: Volkswagen Foundation http://dx.doi.org/10.13039/501100001663
    Description: https://doi.org/10.5061/dryad.m0cfxpp6v
    Keywords: ddc:577.7 ; Indo-Pacific sponges ; dissolved organic matter ; biogeochemical cycles
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-09
    Description: Tracing pathways and transformations of particulate organic carbon from landscape sources to oceanic sinks is commonly done using the isotopic composition or biomarker content of particulate organic matter (POM). However, similarity of source characteristics and complex mixing in rivers often preclude a robust deconvolution of individual contributions. Moreover, these approaches are limited in detecting organic matter transformations. This impedes understanding of carbon cycling. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT‐ICR‐MS) can simultaneously identify many molecular formulas from mixtures of organic matter, and provide direct information on its compositional variability. Here, we investigate how FT‐ICR‐MS can give insight into POM dynamics on a landscape scale, focusing on the trans‐Himalayan Kali Gandaki River, Nepal. Using molecular information, we identify source tracers in the solvent extractable lipid fraction of riverine POM, finding up to 102 indicative molecular formulas for individual sources. Further, we assess molecular transformations of the lipid fraction of POM during its transfer from litter into topsoil, and onwards into the river. A large number of shared mass formulas and a well‐preserved isoprenoidal patterns suggest efficient incorporation of litter into topsoil. In contrast, we observe a selective loss of mass formulas and a preferential export of formulas with low double bond equivalents and a low nominal oxidation state of carbon after organic matter entrainment in the river. Our results demonstrate the potential of FT‐ICR‐MS for source‐to‐sink studies, allowing detailed organic matter source characterization and discrimination, and tracking of molecular transformations along organic matter pathways spanning different spatial and temporal scales.
    Description: Plain Language Summary: The transfer of organic matter (OM) by rivers from landscape sources into the ocean followed by its burial in marine sediments is an important carbon sink. Therefore, OM is often traced along this journey using its isotopic or biomarker composition. But contributions of OM sources to river sediments can be difficult to estimate because of similar source characteristics, mixing of many sources and changes of the molecular composition along the way. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT‐ICR‐MS) is a novel method able to identify many molecular formulas from OM mixtures at once providing direct information about their molecular composition. Here, we investigate how FT‐ICR‐MS contributes to understanding the transport and transformation of particulate OM focusing on a Himalayan river in Nepal. We use the molecular information to identify tracers for individual OM sources in the landscape. We then assess molecular transformations during the transfer of litter into topsoil, and onwards into the river. Our data suggest efficient incorporation of litter into topsoil, but we observe a selective loss of molecular formulas upon entrainment of sources into the river. Our results reveal that FT‐ICR‐MS is useful for detailed source characterization and tracking of molecular transformations along OM pathways.
    Description: Key Points: Organic matter sourcing and transformations in a Himalayan river studied by FT‐ICR‐MS measurements of solvent extractable lipids. Identification of up to 102 indicator mass formulas for different organic matter sources in the landscape using indicator species analysis. Mass formulas preserved during incorporation of litter into topsoil but selectively lost during entrainment of sources into the river.
    Description: Helmholtz Impuls und Vernetzungsfond
    Description: GFZ expedition funding
    Description: http://doi.org/10.5880/GFZ.4.6.2022.002
    Keywords: ddc:551 ; particulate organic carbon ; solvent extractable lipids ; FT‐ICR‐MS ; Himalaya ; carbon cycling ; indicator species analysis
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-09-08
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-09-14
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-27
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 35(6), (2021): e2021GB006938, https://doi.org/10.1029/2021GB006938.
    Description: As climate-driven El Niño Southern Oscillation (ENSO) events are projected to increase in frequency and severity, much attention has focused on impacts regarding ecosystem productivity and carbon balance in Amazonian rainforests, with comparatively little attention given to carbon dynamics in fluvial ecosystems. In this study, we compared the wet 2012 La Niña period to the following normal hydrologic period in the Amazon River. Elevated water flux during the La Niña period was accompanied by dilution of inorganic ion concentrations. Furthermore, the La Niña period exported 2.77 Tg C yr−1 more dissolved organic carbon (DOC) than the normal period, an increase greater than the annual amount of DOC exported by the Mississippi River. Using ultra-high-resolution mass spectrometry, we detected both intra- and interannual differences in dissolved organic matter (DOM) composition, revealing that DOM exported during the dry season and the normal period was more aliphatic, whereas compounds in the wet season and following the La Niña event were more aromatic, with ramifications for its environmental role. Furthermore, as this study has the highest temporal resolution DOM compositional data for the Amazon River to-date we showed that compounds were highly correlated to a 6-month lag in Pacific temperature and pressure anomalies, suggesting that ENSO events could impact DOM composition exported to the Atlantic Ocean. Therefore, as ENSO events increase in frequency and severity into the future it seems likely that there will be downstream consequences for the fate of Amazon Basin-derived DOM concurrent with lag periods as described here.
    Description: This work was partially supported by National Science Foundation grant OCE-1464396 to Robert G. M. Spencer and funding from the Harbourton Foundation to Robert G. M. Spencer, R. Max Holmes, and Bernhard Peucker-Ehrenbrink.
    Description: 2021-12-11
    Keywords: Amazon river ; carbon cycling ; dissolved organic carbon ; dissolved organic matter ; ENSO ; FT-ICR MS
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-06-21
    Description: Dissolved organic matter (DOM) is the largest organic carbon reservoir in the ocean and an integral component of biogeochemical cycles. The role of free-living microbes in DOM transformation has been studied thoroughly, whereas little attention has been directed towards the influence of benthic organisms. Sponges are efficient filter feeders and common inhabitants of many benthic communities circumglobally. Here, we investigated how two tropical coral reef sponges shape marine DOM. We compared bacterial abundance, inorganic and organic nutrients in off reef, sponge inhalant, and sponge exhalant water of Melophlus sarasinorum and Rhabdastrella globostellata. DOM and bacterial cells were taken up, and dissolved inorganic nitrogen was released by the two Indo-Pacific sponges. Both sponge species utilized a common set of 142 of a total of 3040 compounds detected in DOM on a molecular formula level via ultrahigh-resolution mass spectrometry. In addition, species-specific uptake was observed, likely due to differences in their associated microbial communities. Overall, the sponges removed presumably semi-labile and semi-refractory compounds from the water column, thereby competing with pelagic bacteria. Within minutes, sponge holobionts altered the molecular composition of surface water DOM (inhalant) into a composition similar to deep-sea DOM (exhalent). The apparent radiocarbon age of DOM increased consistently from off reef and inhalant to exhalant by about 900 14C years for M. sarasinorum. In the pelagic, similar transformations require decades to centuries. Our results stress the dependence of DOM lability definition on the respective environment and illustrate that sponges are hotspots of DOM transformation in the ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Steen, A. D., Kusch, S., Abdulla, H. A., Cakic, N., Coffinet, S., Dittmar, T., Fulton, J. M., Galy, V., Hinrichs, K., Ingalls, A. E., Koch, B. P., Kujawinski, E., Liu, Z., Osterholz, H., Rush, D., Seidel, M., Sepulveda, J., & Wakeham, S. G. Analytical and computational advances, opportunities, and challenges in marine organic biogeochemistry in an era of "Omics". Frontiers in Marine Science, 7, (2020): 718, doi:10.3389/fmars.2020.00718.
    Description: Advances in sampling tools, analytical methods, and data handling capabilities have been fundamental to the growth of marine organic biogeochemistry over the past four decades. There has always been a strong feedback between analytical advances and scientific advances. However, whereas advances in analytical technology were often the driving force that made possible progress in elucidating the sources and fate of organic matter in the ocean in the first decades of marine organic biogeochemistry, today process-based scientific questions should drive analytical developments. Several paradigm shifts and challenges for the future are related to the intersection between analytical progress and scientific evolution. Untargeted “molecular headhunting” for its own sake is now being subsumed into process-driven targeted investigations that ask new questions and thus require new analytical capabilities. However, there are still major gaps in characterizing the chemical composition and biochemical behavior of macromolecules, as well as in generating reference standards for relevant types of organic matter. Field-based measurements are now routinely complemented by controlled laboratory experiments and in situ rate measurements of key biogeochemical processes. And finally, the multidisciplinary investigations that are becoming more common generate large and diverse datasets, requiring innovative computational tools to integrate often disparate data sets, including better global coverage and mapping. Here, we compile examples of developments in analytical methods that have enabled transformative scientific advances since 2004, and we project some challenges and opportunities in the near future. We believe that addressing these challenges and capitalizing on these opportunities will ensure continued progress in understanding the cycling of organic carbon in the ocean.
    Description: The Hanse-Wissenschaftskolleg Delmenhorst, Germany, sponsored the “Marine Organic Biogeochemistry” workshop in April 2019, of which this working group report was a part. The workshop was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project number: 422798570. The Geochemical Society provided additional funding for the conference. AS was supported by DOE grant DE-SC0020369.
    Keywords: Chemometrics ; Natural marine organic matter ; FT-ICR-MS ; Analytical challenges ; HR-NMR ; Marine organic biogeochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-03-14
    Description: Copious amounts of organic carbon are stored for long periods of time in deep continental groundwaters. Little is known about its composition and cycling, mainly due to the difficulties in obtaining sample material. Cool fracture waters of different origins can be obtained under clean conditions at Äspö Hard Rock Laboratory (Äspö HRL, Sweden), operated by the Swedish Nuclear Fuel and Waste Management Company (SKB). We sampled groundwater from different depth (171 to 507 meter below sea level) in the bedrock fractures in November 2018 and March-April 2019. We assessed water chemistry and dissolved organic matter composition via stable carbon isotopic and molecular-formula level analysis in recent Baltic Sea-influenced to old saline fracture waters in the granitic Fennoscandian shield. Physicochemical parameters, major ions, water isotopic compositions (δ18O and δD), total nitrogen as well as dissolved organic matter concentration and stable isotopic composition were obtained for unfiltered groundwater samples from different boreholes.
    Keywords: aquifer; BalticSea_Äspö; BalticSea_Kalmar; Calcium; Carbon, organic, dissolved; Carbon, organic, dissolved, standard deviation; Carbon-14, modern, dissolved inorganic carbon; Carbon-14, modern, dissolved organic carbon; Chlorine; Conductivity; DATE/TIME; Elevation of event; Event label; Extraction efficiency; FT-ICR-MS; groundwater; HA2780A_1; Iron; Iron, total; Iron 2+; KA1755A_3; KA2051A01_5; KA2511A_5; KA2862A_1; KA2865A01_1; KA3105A_3; KA3385A_1; KA3510A_2; KA3600F_2; Latitude of event; Longitude of event; Magnesium; Manganese; Nitrogen, total dissolved; Nitrogen, total dissolved, standard deviation; Nitrogen in ammonium; Nitrogen in nitrate; Nitrogen in nitrite; pH; Phosphorus in phosphate; Potassium; SA1229A_1; SA1730A_1; SA2600A_1; Sodium; Sulfide in hydrogen sulfide; Sulfur in sulfate; Sweden; Temperature, water; Type; δ13C, dissolved inorganic carbon; δ13C, dissolved organic carbon; δ18O, water; δ Deuterium, water
    Type: Dataset
    Format: text/tab-separated-values, 1050 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Osterholz, Helena; Niggemann, Jutta; Giebel, Helge-Ansgar; Simon, Meinhard; Dittmar, Thorsten (2015): Inefficient microbial production of refractory dissolved organic matter in the ocean. Nature Communications, 6, 7422, https://doi.org/10.1038/ncomms8422
    Publication Date: 2023-05-12
    Description: Dissolved organic matter (DOM) in the oceans constitutes a major carbon pool involved in global biogeochemical cycles. More than 96% of the marine DOM resists microbial degradation for thousands of years. The composition of this refractory DOM (RDOM) exhibits a molecular signature which is ubiquitously detected in the deep oceans. Surprisingly efficient microbial transformation of labile into RDOM was shown experimentally, implying that microorganisms produce far more RDOM than needed to sustain the global pool. By assessing the microbial formation and transformation of DOM in unprecedented molecular detail for 3 years, we show that most of the newly formed RDOM is molecularly different from deep sea RDOM. Only 〈0.4% of the net community production was channeled into RDOM molecularly undistinguishable from deep sea DOM. Our study provides novel experimentally derived molecular evidence and data for global models on the production, turnover and accumulation of marine DOM.
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Osterholz, Helena; Singer, Gabriel; Wemheuer, Bernd; Daniel, Rolf; Simon, Meinhard; Niggemann, Jutta; Dittmar, Thorsten (2016): Deciphering associations between dissolved organic molecules and bacterial communities in a pelagic marine system. The ISME Journal, https://doi.org/10.1038/ismej.2015.231
    Publication Date: 2023-05-12
    Description: Dissolved organic matter (DOM) is the main substrate and energy source for heterotrophic bacterioplankton. To understand the interactions between DOM and the bacterial community (BC), it is important to identify the key factors on both sides in detail, chemically distinct moieties in DOM and the various bacterial taxa. Next-generation sequencing facilitates the classification of millions of reads of environmental DNA and RNA amplicons and ultrahigh-resolution mass spectrometry yields up to 10,000 DOM molecular formulae in a marine water sample. Linking this detailed biological and chemical information is a crucial first step toward a mechanistic understanding of the role of microorganisms in the marine carbon cycle. In this study, we interpreted the complex microbiological and molecular information via a novel combination of multivariate statistics. We were able to reveal distinct relationships between the key factors of organic matter cycling along a latitudinal transect across the North Sea. Total BC and DOM composition were mainly driven by mixing of distinct water masses and presumably retain their respective terrigenous imprint on similar timescales on their way through the North Sea. The active microbial community, however, was rather influenced by local events and correlated with specific DOM molecular formulae indicative of compounds that are easily degradable. These trends were most pronounced on the highest resolved level, that is, operationally defined 'species', reflecting the functional diversity of microorganisms at high taxonomic resolution.
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...