GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Continental erosion controls atmospheric carbon dioxide levels on geological timescales through silicate weathering, riverine transport and subsequent burial of organic carbon in oceanic sediments. The efficiency of organic carbon deposition in sedimentary basins is however limited by the ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: The vast majority of freshly produced oceanic dissolved organic carbon (DOC) is derived from marine phytoplankton, then rapidly recycled by heterotrophic microbes. A small fraction of this DOC survives long enough to be routed to the interior ocean, which houses the largest and oldest DOC reservoir. DOC reactivity depends upon its intrinsic chemical composition and extrinsic environmental conditions. Therefore, recalcitrance is an emergent property of DOC that is analytically difficult to constrain. New isotopic techniques that track the flow of carbon through individual organic molecules show promise in unveiling specific biosynthetic or degradation pathways that control the metabolic turnover of DOC and its accumulation in the deep ocean. However, a multivariate approach is required to constrain current carbon fluxes so that we may better predict how the cycling of oceanic DOC will be altered with continued climate change. Ocean warming, acidification, and oxygen depletion may upset the balance between the primary production and heterotrophic reworking of DOC, thus modifying the amount and/or composition of recalcitrant DOC. Climate change and anthropogenic activities may enhance mobilization of terrestrial DOC and/or stimulate DOC production in coastal waters, but it is unclear how this would affect the flux of DOC to the open ocean. Here, we assess current knowledge on the oceanic DOC cycle and identify research gaps that must be addressed to successfully implement its use in global scale carbon models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Coppola, Alysha I; Wiedemeier, Daniel B; Galy, Valier; Haghipour, Negar; Hanke, Ulrich M; Nascimento, Gabriela S; Usman, Muhammed Ojoshogu; Blattmann, Thomas Michael; Reisser, Moritz; Freymond, Chantal V; Zhao, Meixun; Voss, Britta; Wacker, Lukas; Schefuß, Enno; Peucker-Ehrenbrink, Bernhard; Abiven, Samuel; Schmidt, Michael W I; Eglinton, Timothy Ian (2018): Global-scale evidence for the refractory nature of riverine black carbon. Nature Geoscience, 11(8), 584-588, https://doi.org/10.1038/s41561-018-0159-8
    Publication Date: 2023-01-13
    Description: Wildfires and incomplete combustion of fossil fuel produce large amounts of black carbon. Black carbon production and transport are essential components of the carbon cycle. Constraining estimates of black carbon exported from land to ocean is critical, given ongoing changes in land use and climate, which affect fire occurrence and black carbon dynamics. Here, we present an inventory of the concentration and radiocarbon content (∆14C) of particulate black carbon for 18 rivers around the globe. We find that particulate black carbon accounts for about 15.8 ± 0.9% of river particulate organic carbon, and that fluxes of particulate black carbon co-vary with river-suspended sediment, indicating that particulate black carbon export is primarily controlled by erosion. River particulate black carbon is not exclusively from modern sources but is also aged in intermediate terrestrial carbon pools in several high-latitude rivers, with ages of up to 17,000 14C years. The flux-weighted 14C average age of particulate black carbon exported to oceans is 3,700 ± 400 14C years. We estimate that the annual global flux of particulate black carbon to the ocean is 0.017 to 0.037 Pg, accounting for 4 to 32% of the annually produced black carbon. When buried in marine sediments, particulate black carbon is sequestered to form a long-term sink for CO2.
    Type: Dataset
    Format: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet, 29.3 kBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-13
    Keywords: Branched Glycerol dialkyl glycerol tetraethers, fractional abundance Ia; Branched Glycerol dialkyl glycerol tetraethers, fractional abundance Ib; Branched Glycerol dialkyl glycerol tetraethers, fractional abundance Ic; Branched Glycerol dialkyl glycerol tetraethers, fractional abundance IIa; Branched Glycerol dialkyl glycerol tetraethers, fractional abundance IIb; Branched Glycerol dialkyl glycerol tetraethers, fractional abundance IIc; Branched Glycerol dialkyl glycerol tetraethers, fractional abundance IIIa; Branched Glycerol dialkyl glycerol tetraethers, fractional abundance IIIb; Caldarchaeol isomer, fractional abundance; Congo_River; Crenarchaeol isomer, fractional abundance; Cyclization ratio of branched tetraethers; DATE/TIME; Methylation index of dominant branched tetraethers; MULT; Multiple investigations; Ratio; Standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 884 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hemingway, Jordon D; Schefuß, Enno; Spencer, Robert GM; Dinga, Bienvenu Jean; Eglinton, Timothy Ian; McIntyre, Cameron; Galy, Valier V (2017): Hydrologic controls on seasonal and inter-annual variability of Congo River particulate organic matter source and reservoir age. Chemical Geology, 466, 454-465, https://doi.org/10.1016/j.chemgeo.2017.06.034
    Publication Date: 2023-01-13
    Description: We present dissolved organic carbon (DOC) concentrations, particulate organic matter (POM) composition (d13C, d15N, D14C, N/C), and particulate glycerol dialkyl glycerol tetraether (GDGT) distributions from a 34-month time-series near the mouth of the Congo River. An end-member mixing model using d13C and N/C indicates that exported POM is consistently dominated by C3 rainforest soil sources, with increasing contribution from C3 vegetation and decreasing contribution from phytoplankton at high discharge. Large C4 inputs are never observed despite covering ~ 13% of the catchment. Low and variable D14C values during 2011 [annual mean = (-148 ± 82) per mil], when discharge from left-bank tributaries located in the southern hemisphere reached record lows, likely reflect a bias toward pre-aged POM derived from the Cuvette Congolaise swamp forest. In contrast, D14C values were stable near -50 per mil between January and June 2013, when left-bank discharge was highest. We suggest that headwater POM is replaced and/or diluted by C3 vegetation and pre-aged soils during transit through the Cuvette Congolaise, whereas left-bank tributaries export significantly less pre-aged material. GDGT distributions provide further evidence for seasonal and inter-annual variability in soil provenance. The cyclization of branched tetraethers and the GDGT-0 to crenarchaeol ratio are positively correlated with discharge (r 〉=0.70; p-value 〈= 4.3 × 10**-5) due to the incorporation of swamp-forest soils when discharge from right-bank tributaries located in the northern hemisphere is high. Both metrics reach record lows during 2013, supporting our interpretation of increased left-bank contribution at this time. We conclude that hydrologic variability is a major control of POM provenance in the Congo River Basin and that tropical wetlands can be a significant POM source despite their small geographic coverage.
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kirkels, Frédérique M S A; Ponton, Camilo; Galy, Valier; West, A Joshua; Feakins, Sarah J; Peterse, Francien (2019): From Andes to Amazon: assessing branched tetraether lipids as tracers for soil Organic Carbon in the Madre de Dios River system. Journal of Geophysical Research: Biogeosciences, https://doi.org/10.1029/2019JG005270
    Publication Date: 2023-01-13
    Description: Geochemical data, brGDGT fractions and calculated indices for soils and river samples during the wet and dry season in the Madre de Dios catchment, Peru.
    Keywords: altitudinal transect; Amazon headwaters; Branched and isoprenoid tetraether index; Branched GDGTs; Branched glycerol dialkyl glycerol tetraether, Ia, fractional abundance; Branched glycerol dialkyl glycerol tetraether, Ib, fractional abundance; Branched glycerol dialkyl glycerol tetraether, Ic, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIa, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIa', fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIb, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIb', fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIc, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIc', fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIIa, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIIa', fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIIb, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIIb', fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIIc, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIIc', fractional abundance; Calculated from linear regression; Carbon, organic, total; Cyclization ratio of branched tetraethers; Degree of cyclisation; derived from pH; ELEVATION; in-situ production; Isomer ratio; LATITUDE; LONGITUDE; Madre_de_Dios_River_System; Madre de Dios River; MULT; Multiple investigations; Peru; pH, soil; Sample comment; Sample ID; soil inputs; Specific surface area; Sum branched glycerol dialkyl glycerol tetraether, per unit sediment mass; Suspended sediment concentration; Temperature, annual mean
    Type: Dataset
    Format: text/tab-separated-values, 2233 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-07
    Description: This dataset includes organic carbon measurements on sediment samples collected in Bute Inlet (British Columbia, Canada) in October 2016 (cruise number PGC2016007) and October 2017 (cruise number PGC2017005) aboard the research vessel CCGS Vector. The cruise PGC2016007 took place between 7 October and 17 October 2016 and was led by Gwyn Lintern. The cruise PGC2017005 took place between 19 and 29 October and was led by Cooper Stacey. River samples were taken in the Homathko and Southgate rivers using Niskin bottles in the water column and a grab sampler in the river beds and the river deltas
    Keywords: Age, 14C AMS; Age, dated; Bottle, Niskin; Bute Inlet, British Columbia, Canada; Carbon, organic, total; DEPTH, sediment/rock; DEPTH, water; Environment; Event label; fjords; Grab; GRAB; Latitude of event; Longitude of event; NIS; organic carbon (OC); Percentile 50; Percentile 90; PGC-2017-005; PGC-2017-005_RB16; PGC-2017-005_RB22; PGC-2017-005_RB24; PGC-2017-005_RBL18; PGC-2017-005_RD12; PGC-2017-005_RD14; PGC-2017-005_RD6; PGC-2017-005_RD8; PGC-2017-005_RP11; PGC-2017-005_RP13; PGC-2017-005_RP15; PGC-2017-005_RP16; PGC-2017-005_RP17; PGC-2017-005_RP19; PGC-2017-005_RP7; PGC-2017-005_RP9; PGC-2017-005_RW23; PGC-2017-005_SS18; PGC-2017-005_SS20; River; sediment; submarine canyon; Vector; δ13C, organic carbon
    Type: Dataset
    Format: text/tab-separated-values, 118 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-07
    Description: This dataset includes organic carbon measurements on sediment samples collected in Bute Inlet (British Columbia, Canada) in October 2016 (cruise number PGC2016007) and October 2017 (cruise number PGC2017005) aboard the research vessel CCGS Vector. The cruise PGC2016007 took place between 7 October and 17 October 2016 and was led by Gwyn Lintern. The cruise PGC2017005 took place between 19 and 29 October and was led by Cooper Stacey. Marine sediment samples were collected in Bute Inlet using a box corer for the sandy samples in the submarine channel and a piston corer for the muddy samples in the overbanks and distal basin.
    Keywords: 1; 10; 11; 12; 13; 14; 15; 2; 3; 4; 5; 6; 7; 8; 9; Age, 14C AMS; Age, dated; BC; Box corer; Bute Inlet, British Columbia, Canada; Carbon, organic, total; Core; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Elevation of event; Event label; fjords; Latitude of event; Longitude of event; Method/Device of event; organic carbon (OC); PC; Percentile 50; Percentile 90; PGC-2016-003; PGC-2016-003_STN01; PGC-2016-007; PGC-2016-007_STN010; PGC-2016-007_STN014; PGC-2016-007_STN015; PGC-2016-007_STN019; PGC-2016-007_STN020; PGC-2016-007_STN021; PGC-2016-007_STN025; PGC-2016-007_STN026; PGC-2016-007_STN028; PGC-2016-007_STN029; PGC-2016-007_STN030; PGC-2016-007_STN031; PGC-2016-007_STN032; PGC-2016-007_STN036; PGC-2016-007_STN09; Piston corer; sediment; Sub-Environment; submarine canyon; Vector; δ13C, organic carbon
    Type: Dataset
    Format: text/tab-separated-values, 516 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Galy, Valier; France-Lanord, Christian; Peucker-Ehrenbrink, Bernhard; Huyghe, Pascale (2010): Sr-Nd-Os evidence for a stable erosion regime in the Himalaya during the past 12 Myr. Earth and Planetary Science Letters, 290(3-4), 474-480, https://doi.org/10.1016/j.epsl.2010.01.004
    Publication Date: 2023-06-27
    Description: Modern erosion of the Himalaya, the world's largest mountain range, transfers huge dissolved and particulate loads to the ocean. It plays an important role in the long-term global carbon cycle, mostly through enhanced organic carbon burial in the Bengal Fan. To understand the role of past Himalayan erosion, the influence of changing climate and tectonic on erosion must be determined. Here we use a 12 Myr sedimentary record from the distal Bengal Fan (Deep Sea Drilling Project Site 218) to reconstruct the Mio-Pliocene history of Himalayan erosion. We use carbon stable isotopes (d13C) of bulk organic matter as paleo-environmental proxy and stratigraphic tool. Multi-isotopic - Sr, Nd and Os - data are used as proxies for the source of the sediments deposited in the Bengal Fan over time. d13C values of bulk organic matter shift dramatically towards less depleted values, revealing the widespread Late Miocene (ca. 7.4 Ma) expansion of C4 plants in the basin. Sr, Nd and Os isotopic compositions indicate a rather stable erosion pattern in the Himalaya range during the past 12 Myr. This supports the existence of a strong connection between the southern Tibetan plateau and the Bengal Fan. The tectonic evolution of the Himalaya range and Southern Tibet seems to have been unable to produce large re-organisation of the drainage system. Moreover, our data do not suggest a rapid change of the altitude of the southern Tibetan plateau during the past 12 Myr. Variations in Sr and Nd isotopic compositions around the late Miocene expansion of C4 plants are suggestive of a relative increase in the erosion of High Himalaya Crystalline rock (i.e. a simultaneous reduction of both Transhimalayan batholiths and Lesser Himalaya relative contributions). This could be related to an increase in aridity as suggested by the ecological and sedimentological changes at that time. A reversed trend in Sr and Nd isotopic compositions is observed at the Plio-Pleistocene transition that is likely related to higher precipitation and the development of glaciers in the Himalaya. These almost synchronous moderate changes in erosion pattern and climate changes during the late Miocene and at the Plio-Pleistocene transition support the notion of a dominant control of climate on Himalayan erosion during this time period. However, stable erosion regime during the Pleistocene is suggestive of a limited influence of the glacier development on Himalayan erosion.
    Keywords: 22-218; AGE; Carbon, organic, total; Deep Sea Drilling Project; DEPTH, sediment/rock; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Glomar Challenger; Indian Ocean//FAN; Leg22; Neodymium-143/Neodymium-144 ratio; Neodymium-143/Neodymium-144 ratio, error; Osmium; Osmium-187/Osmium-188, error; Osmium-187/Osmium-188 ratio; Osmium-188; Sample code/label; Strontium-87/Strontium-86 ratio; Strontium-87/Strontium-86 ratio, error; δ13C, organic carbon; ε-Neodymium
    Type: Dataset
    Format: text/tab-separated-values, 303 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-06-24
    Keywords: C3 soils, fractional contribution; C3 vegetation, fractional contribution; Congo_River; DATE/TIME; Event label; MULT; Multiple investigations; Oubangui_River; Phytoplankton, fractional contribution; Reference/source
    Type: Dataset
    Format: text/tab-separated-values, 401 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...