GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2021-03-19
    Beschreibung: During the summer monsoon, the western tropical Indian Ocean is predicted to be a hot spot for dimethylsulfide emissions, the major marine sulfur source to the atmosphere, and an important aerosol precursor. Other aerosol relevant fluxes, such as isoprene and sea spray, should also be enhanced, due to the steady strong winds during the monsoon. Marine air masses dominate the area during the summer monsoon, excluding the influence of continentally derived pollutants. During the SO234-2/235 cruise in the western tropical Indian Ocean from July to August 2014, directly measured eddy covariance DMS fluxes confirm that the area is a large source of sulfur to the atmosphere (cruise average 9.1 μmol m−2 d−1). The directly measured fluxes, as well as computed isoprene and sea spray fluxes, were combined with FLEXPART backward and forward trajectories to track the emissions in space and time. The fluxes show a significant positive correlation with aerosol data from the Terra and Suomi-NPP satellites, indicating a local influence of marine emissions on atmospheric aerosol numbers.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2021-02-08
    Beschreibung: Oceanic very short-lived substances (VSLSs), such as bromoform (CHBr3), contribute to stratospheric halogen loading and, thus, to ozone depletion. However, the amount, timing, and region of bromine delivery to the stratosphere through one of the main entrance gates, the Indian summer monsoon circulation, are still uncertain. In this study, we created two bromoform emission inventories with monthly resolution for the tropical Indian Ocean and west Pacific based on new in situ bromoform measurements and novel ocean biogeochemistry modeling. The mass transport and atmospheric mixing ratios of bromoform were modeled for the year 2014 with the particle dispersion model FLEXPART driven by ERA-Interim reanalysis. We compare results between two emission scenarios: (1) monthly averaged and (2) annually averaged emissions. Both simulations reproduce the atmospheric distribution of bromoform from ship- and aircraft-based observations in the boundary layer and upper troposphere above the Indian Ocean reasonably well. Using monthly resolved emissions, the main oceanic source regions for the stratosphere include the Arabian Sea and Bay of Bengal in boreal summer and the tropical west Pacific Ocean in boreal winter. The main stratospheric injection in boreal summer occurs over the southern tip of India associated with the high local oceanic sources and strong convection of the summer monsoon. In boreal winter more bromoform is entrained over the west Pacific than over the Indian Ocean. The annually averaged stratospheric injection of bromoform is in the same range whether using monthly averaged or annually averaged emissions in our Lagrangian calculations. However, monthly averaged emissions result in the highest mixing ratios within the Asian monsoon anticyclone in boreal summer and above the central Indian Ocean in boreal winter, while annually averaged emissions display a maximum above the west Indian Ocean in boreal spring. In the Asian summer monsoon anticyclone bromoform atmospheric mixing ratios vary by up to 50% between using monthly averaged and annually averaged oceanic emissions. Our results underline that the seasonal and regional stratospheric bromine injection from the tropical Indian Ocean and west Pacific critically depend on the seasonality and spatial distribution of the VSLS emissions.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Atmospheres, 123 (10). pp. 5720-5738.
    Publikationsdatum: 2021-02-08
    Beschreibung: Halogen- and sulfur-containing compounds are supersaturated in the surface ocean, which results in their emission to the atmosphere. These compounds can be transported to the stratosphere, where they impact ozone, the background aerosol layer, and climate. In this study we calculate the seasonal and interannual variability of transport from the West Indian Ocean (WIO) surface to the stratosphere for 2000-2016 with the Lagrangian transport model FLEXPART using ERA-Interim meteorological fields. We investigate the transport relevant for very short lived substances (VSLS) with tropospheric lifetimes corresponding to dimethylsulfide (1 day), methyl iodide (CH3I, 3.5 days), bromoform (CHBr3, 17 days), and dibromomethane (CH2Br2, 150 days). The stratospheric source gas injection of VSLS tracers from the WIO shows a distinct annual cycle associated with the Asian monsoon. Over the 16-year time series, a slight increase in source gas injection from the WIO to the stratosphere is found for all VSLS tracers and during all seasons. The interannual variability shows a relationship with sea surface temperatures in the WIO as well as the El Niño-Southern Oscillation. During boreal spring of El Niño, enhanced stratospheric injection of VSLS from the tropical WIO is caused by positive sea surface temperature anomalies and enhanced vertical uplift above the WIO. During boreal fall of La Niña, strong injection is related to enhanced atmospheric upward motion over the East Indian Ocean and a prolonged Indian summer monsoon season. Related physical mechanisms and uncertainties are discussed in this study
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-02-01
    Beschreibung: The first concerted multi-model intercomparison of halogenated very short-lived substances (VSLS) has been performed, within the framework of the ongoing Atmospheric Tracer Transport Model Intercomparison Project (TransCom). Eleven global models or model variants participated, simulating the major natural bromine VSLS, bromoform (CHBr3) and dibromomethane (CH2Br2), over a 20-year period (1993-2012). The overarching goal of TransCom-VSLS was to provide a reconciled model estimate of the stratospheric source gas injection (SGI) of bromine from these gases, to constrain the current measurement-derived range, and to investigate inter-model differences due to emissions and transport processes.Models ran with standardised idealised chemistry, to isolate differences due to transport, and we investigated the sensitivity of results to a range of VSLS emission inventories. Models were tested in their ability to reproduce the observed seasonal and spatial distribution of VSLS at the surface, using measurements from NOAA’s long-term global monitoring network, and in the tropical troposphere, using recent aircraft measurements - including high altitude observations from the NASA Global Hawk platform. The models generally capture the seasonal cycle of surface CHBr3 and CH2Br2 well, with a strong model-measurement correlation (r ≥ 0.7) and a low sensitivity to the choice of emission inventory, at most sites. In a given model, the absolute model-measurement agreement is highly sensitive to the choice of emissions and inter-model differences are also apparent, even when using the same inventory, highlighting the challenges faced in evaluating such inventories at the global scale. Across the ensemble, most consistency is found within the tropics where most of the models (8 out of 11) achieve optimal agreement to surface CHBr3 observations using the lowest of the three CHBr3 emission inventories tested (similarly, 8 out of 11 models for CH2 Br2). In general, the models are able to reproduce well observations of CHBr3 and CH2 Br2 obtained in the tropical tropopause layer (TTL) at various locations throughout the Pacific. Zonal variability in VSLS loading in the TTL is generally consistent among models, with CHBr3 (and to a lesser extent CH2 Br2) most elevated over the tropical West Pacific during boreal winter. The models also indicate the Asian Monsoon during boreal summer to be an important pathway for VSLS reaching the stratosphere, though the strength of this signal varies considerably among models. We derive an ensemble climatological mean estimate of the stratospheric bromine SGI from CHBr3 and CH2 Br2 of 2.0 (1.2-2.5) ppt, ≫ 57% larger than the best estimate from the most recent World Meteorological Organization (WMO) Ozone Assessment Report. We find no evidence for a long-term, transport-driven trend in the stratospheric SGI of bromine over the simulation period. However, transport-driven inter-annual variability in the annual mean bromine SGI is of the order of a ±5%, with SGI exhibiting a strong positive correlation with ENSO in the East Pacific.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019-09-23
    Beschreibung: Halocarbons are produced naturally in the oceans by biological and chemical processes. They are emitted from surface seawater into the atmosphere, where they take part in numerous chemical processes such as ozone destruction and the oxidation of mercury and dimethyl sulfide. Here we present oceanic and atmospheric halocarbon data for the Peruvian upwelling zone obtained during the M91 cruise onboard the research vessel METEOR in December 2012. Surface waters during the cruise were characterized by moderate concentrations of bromoform (CHBr3) and dibromomethane (CH2Br2) correlating with diatom biomass derived from marker pigment concentrations, which suggests this phytoplankton group is a likely source. Concentrations measured for the iodinated compounds methyl iodide (CH3I) of up to 35.4 pmol L−1, chloroiodomethane (CH2ClI) of up to 58.1 pmol L−1 and diiodomethane (CH2I2) of up to 32.4 pmol L−1 in water samples were much higher than previously reported for the tropical Atlantic upwelling systems. Iodocarbons also correlated with the diatom biomass and even more significantly with dissolved organic matter (DOM) components measured in the surface water. Our results suggest a biological source of these compounds as a significant driving factor for the observed large iodocarbon concentrations. Elevated atmospheric mixing ratios of CH3I (up to 3.2 ppt), CH2ClI (up to 2.5 ppt) and CH2I2 (3.3 ppt) above the upwelling were correlated with seawater concentrations and high sea-to-air fluxes. During the first part of the cruise, the enhanced iodocarbon production in the Peruvian upwelling contributed significantly to tropospheric iodine levels, while this contribution was considerably smaller during the second part.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2018-02-06
    Beschreibung: We describe the main differences in simulations of stratospheric climate and variability by models within the fifth Coupled Model Intercomparison Project (CMIP5) that have a model top above the stratopause and relatively fine stratospheric vertical resolution (high-top), and those that have a model top below the stratopause (low-top). Although the simulation of mean stratospheric climate by the two model ensembles is similar, the low-top model ensemble has very weak stratospheric variability on daily and interannual time scales. The frequency of major sudden stratospheric warming events is strongly underestimated by the low-top models with less than half the frequency of events observed in the reanalysis data and high-top models. The lack of stratospheric variability in the low-top models affects their stratosphere-troposphere coupling, resulting in short-lived anomalies in the Northern Annular Mode, which do not produce long-lasting tropospheric impacts, as seen in observations. The lack of stratospheric variability, however, does not appear to have any impact on the ability of the low-top models to reproduce past stratospheric temperature trends. We find little improvement in the simulation of decadal variability for the high-top models compared to the low-top, which is likely related to the fact that neither ensemble produces a realistic dynamical response to volcanic eruptions
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2019-09-23
    Beschreibung: Sea surface and atmospheric measurements of dimethylsulphide (DMS) were performed during the TransBrom cruise in the western Pacific Ocean between Japan and Australia in October 2009. Air–sea DMS fluxes were computed between 0 and 30 μmol m−2 d−1, which are in agreement with those computed by the current climatology, and peak emissions of marine DMS into the atmosphere were found during the occurrence of tropical storm systems. Atmospheric variability in DMS, however, did not follow that of the computed fluxes and was more related to atmospheric transport processes. The computed emissions were used as input fields for the Lagrangian dispersion model FLEXPART, which was set up with actual meteorological fields from ERA-Interim data and different chemical lifetimes of DMS. A comparison with aircraft in situ data from the adjacent HIPPO2 campaign revealed an overall good agreement between modelled versus observed DMS profiles over the tropical western Pacific Ocean. Based on observed DMS emissions and meteorological fields along the cruise track, the model projected that up to 30 g S per month in the form of DMS, emitted from an area of 6 × 104 m2, can be transported above 17 km. This surprisingly large DMS entrainment into the stratosphere is disproportionate to the regional extent of the area of emissions and mainly due to the high convective activity in this region as simulated by the transport model. Thus, if DMS can cross the tropical tropopause layer (TTL), we suggest that the considerably larger area of the tropical western Pacific Ocean can be a source of sulphur to the stratosphere, which has not been considered as yet.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2019-09-23
    Beschreibung: A latitudinal cross-section and vertical profiles of iodine monoxide (IO) are reported from the marine boundary layer of the Western Pacific. The measurements were taken using Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) during the TransBrom cruise of the German research vessel Sonne, which led from Tomakomai, Japan (42° N, 141° E) through the Western Pacific to Townsville, Australia (19° S, 146° E) in October 2009. In the marine boundary layer within the tropics (between 20° N and 5° S), IO mixing ratios ranged between 1 and 2.2 ppt, whereas in the subtropics and at mid-latitudes typical IO mixing ratios were around 1 ppt in the daytime. The profile retrieval reveals that the bulk of the IO was located in the lower part of the marine boundary layer. Photochemical simulations indicate that the organic iodine precursors observed during the cruise (CH3I, CH2I2, CH2ClI, CH2BrI) are not sufficient to explain the measured IO mixing ratios. Reasonable agreement between measured and modelled IO can only be achieved, if an additional sea-air flux of inorganic iodine (e.g. I2) is assumed in the model. Our observations add further evidence to previous studies that reactive iodine is an important oxidant in the marine boundary layer.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2019-09-23
    Beschreibung: We investigate the contribution of oceanic methyl iodide (CH3I) to the stratospheric iodine budget. Based on CH3I measurements from three tropical ship campaigns and the Lagrangian transport model FLEXPART, we provide a detailed analysis of CH3I transport from the ocean surface to the cold point in the upper tropical tropopause layer (TTL). While average oceanic emissions differ by less than 50% from campaign to campaign, the measurements show much stronger variations within each campaign. A positive correlation between the oceanic CH3I emissions and the efficiency of CH3I troposphere–stratosphere transport has been identified for some cruise sections. The mechanism of strong horizontal surface winds triggering large emissions on the one hand and being associated with tropical convective systems, such as developing typhoons, on the other hand, could explain the identified correlations. As a result of the simultaneous occurrence of large CH3I emissions and strong vertical uplift, localized maximum mixing ratios of 0.6 ppt CH3I at the cold point have been determined for observed peak emissions during the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere)-Sonne research vessel campaign in the coastal western Pacific. The other two campaigns give considerably smaller maxima of 0.1 ppt CH3I in the open western Pacific and 0.03 ppt in the coastal eastern Atlantic. In order to assess the representativeness of the large local mixing ratios, we use climatological emission scenarios to derive global upper air estimates of CH3I abundances. The model results are compared with available upper air measurements, including data from the recent ATTREX and HIPPO2 aircraft campaigns. In the eastern Pacific region, the location of the available measurement campaigns in the upper TTL, the comparisons give a good agreement, indicating that around 0.01 to 0.02 ppt of CH3I enter the stratosphere. However, other tropical regions that are subject to stronger convective activity show larger CH3I entrainment, e.g., 0.08 ppt in the western Pacific. Overall our model results give a tropical contribution of 0.04 ppt CH3I to the stratospheric iodine budget. The strong variations in the geographical distribution of CH3I entrainment suggest that currently available upper air measurements are not representative of global estimates and further campaigns will be necessary in order to better understand the CH3I contribution to stratospheric iodine.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Atmospheres, 118 (10). pp. 4788-4800.
    Publikationsdatum: 2018-02-06
    Beschreibung: Reconstructions of the atmospheric sulfate aerosol burdens resulting from past volcanic eruptions are based on ice core-derived estimates of volcanic sulfate deposition and the assumption that the two quantities are directly proportional. We test this assumption within simulations of tropical volcanic stratospheric sulfur injections with the MAECHAM5-HAM aerosol-climate model. An ensemble of 70 simulations is analyzed, with SO2 injections ranging from 8.5 to 700 Tg, with eruptions in January and July. Modeled sulfate deposition flux to Antarctica shows excellent spatial correlation with ice core-derived estimates for Pinatubo and Tambora, although the comparison suggests the modeled flux to the ice sheets is 4–5 times too large. We find that Greenland and Antarctic deposition efficiencies (the ratio of sulfate flux to each ice sheet to the maximum hemispheric stratospheric sulfate aerosol burden) vary as a function of the magnitude and season of stratospheric sulfur injection. Changes in simulated sulfate deposition for large SO2 injections are connected to increases in aerosol particle size, which impact aerosol sedimentation velocity and radiative properties, the latter leading to strong dynamical changes including strengthening of the winter polar vortices, which inhibits the transport of stratospheric aerosols to high latitudes. The resulting relationship between Antarctic and Greenland volcanic sulfate deposition is nonlinear for very large eruptions, with significantly less sulfate deposition to Antarctica than to Greenland. These model results suggest that variability of deposition efficiency may be an important consideration in the interpretation of ice core sulfate signals for eruptions of Tambora-magnitude and larger.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...