GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-07-20
    Description: The transport of trace gases by the atmospheric circulation plays an important role in the climate system and its response to external forcing. Transport presents a challenge for Atmospheric General Circulation Models (AGCMs), as errors in both the resolved circulation and the numerical representation of transport processes can bias their abundance. In this study, two tests are proposed to assess transport by the dynamical core of an AGCM. To separate transport from chemistry, the tests focus on the age‐of‐air, an estimate of the mean transport time by the circulation. The tests assess the coupled stratosphere–troposphere system, focusing on transport by the overturning circulation and isentropic mixing in the stratosphere, or Brewer–Dobson Circulation, where transport time‐scales on the order of months to years provide a challenging test of model numerics. Four dynamical cores employing different numerical schemes (finite‐volume, pseudo‐spectral, and spectral‐element) and discretizations (cubed sphere versus latitude–longitude) are compared across a range of resolutions. The subtle momentum balance of the tropical stratosphere is sensitive to model numerics, and the first intercomparison reveals stark differences in tropical stratospheric winds, particularly at high vertical resolution: some cores develop westerly jets and others easterly jets. This leads to substantial spread in transport, biasing the age‐of‐air by up to 25% relative to its climatological mean, making it difficult to assess the impact of the numerical representation of transport processes. This uncertainty is removed by constraining the tropical winds in the second intercomparison test, in a manner akin to specifying the Quasi‐Biennial Oscillation in an AGCM. The dynamical cores exhibit qualitative agreement on the structure of atmospheric transport in the second test, with evidence of convergence as the horizontal and vertical resolution is increased in a given model. Significant quantitative differences remain, however, particularly between models employing spectral versus finite‐volume numerics, even in state‐of‐the‐art cores.
    Description: The climatological and zonal mean zonal wind ū (m·s−1), as simulated by two different dynamical cores, (left) pseudospectral (GFDL‐PS) and (right) finite‐volume (CAM‐FV), with (top) 40 vertical levels and (bottom) 80 vertical levels. With higher vertical resolution, the pseudospectral core develops westerlies in the tropical stratosphere between 20 and 80 hPa, while the finite‐volume core consistently simulates easterlies at both vertical resolutions. Both cores have comparable horizontal resolution. The contour interval is 10 m·s−1.
    Description: US National Science Foundation
    Keywords: 551.5 ; age of air ; Brewer–Dobson circulation ; dynamical cores ; stratospheric dynamics ; tracer transport.
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-02-06
    Description: We describe the main differences in simulations of stratospheric climate and variability by models within the fifth Coupled Model Intercomparison Project (CMIP5) that have a model top above the stratopause and relatively fine stratospheric vertical resolution (high-top), and those that have a model top below the stratopause (low-top). Although the simulation of mean stratospheric climate by the two model ensembles is similar, the low-top model ensemble has very weak stratospheric variability on daily and interannual time scales. The frequency of major sudden stratospheric warming events is strongly underestimated by the low-top models with less than half the frequency of events observed in the reanalysis data and high-top models. The lack of stratospheric variability in the low-top models affects their stratosphere-troposphere coupling, resulting in short-lived anomalies in the Northern Annular Mode, which do not produce long-lasting tropospheric impacts, as seen in observations. The lack of stratospheric variability, however, does not appear to have any impact on the ability of the low-top models to reproduce past stratospheric temperature trends. We find little improvement in the simulation of decadal variability for the high-top models compared to the low-top, which is likely related to the fact that neither ensemble produces a realistic dynamical response to volcanic eruptions
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-01
    Description: The enhancement of the stratospheric aerosol layer by volcanic eruptions induces a complex set of responses causing global and regional climate effects on a broad range of timescales. Uncertainties exist regarding the climatic response to strong volcanic forcing identified in coupled climate simulations that contributed to the fifth phase of the Coupled Model Intercomparison Project (CMIP5). In order to better understand the sources of these model diversities, the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP) has defined a coordinated set of idealized volcanic perturbation experiments to be carried out in alignment with the CMIP6 protocol. VolMIP provides a common stratospheric aerosol data set for each experiment to minimize differences in the applied volcanic forcing. It defines a set of initial conditions to assess how internal climate variability contributes to determining the response. VolMIP will assess to what extent volcanically forced responses of the coupled ocean–atmosphere system are robustly simulated by state-of-the-art coupled climate models and identify the causes that limit robust simulated behavior, especially differences in the treatment of physical processes. This paper illustrates the design of the idealized volcanic perturbation experiments in the VolMIP protocol and describes the common aerosol forcing input data sets to be used.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-06
    Description: The climate research community uses atmospheric reanalysis data sets to understand a wide range of processes and variability in the atmosphere, yet different reanalyses may give very different results for the same diagnostics. The Stratosphere–troposphere Processes And their Role in Climate (SPARC) Reanalysis Intercomparison Project (S-RIP) is a coordinated activity to compare reanalysis data sets using a variety of key diagnostics. The objectives of this project are to identify differences among reanalyses and understand their underlying causes, to provide guidance on appropriate usage of various reanalysis products in scientific studies, particularly those of relevance to SPARC, and to contribute to future improvements in the reanalysis products by establishing collaborative links between reanalysis centres and data users. The project focuses predominantly on differences among reanalyses, although studies that include operational analyses and studies comparing reanalyses with observations are also included when appropriate. The emphasis is on diagnostics of the upper troposphere, stratosphere, and lower mesosphere. This paper summarizes the motivation and goals of the S-RIP activity and extensively reviews key technical aspects of the reanalysis data sets that are the focus of this activity. The special issue "The SPARC Reanalysis Intercomparison Project (S-RIP)" in this journal serves to collect research with relevance to the S-RIP in preparation for the publication of the planned two (interim and full) S-RIP reports.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 32 (4). pp. 1101-1120.
    Publication Date: 2022-01-31
    Description: Proxy data and observations suggest that large tropical volcanic eruptions induce a poleward shift of the North Atlantic jet stream in boreal winter. However, there is far from universal agreement in models on this effect and its mechanism, and the possibilities of a corresponding jet shift in the Southern Hemisphere or the summer season have received little attention. Using a hierarchy of simplified atmospheric models, this study examines the impact of stratospheric aerosol on the extratropical circulation over the annual cycle. In particular, the models allow the separation of the dominant shortwave (surface cooling) and longwave (stratospheric warming) impacts of volcanic aerosol. It is found that stratospheric warming shifts the jet poleward in both summer and winter hemispheres. The experiments cannot definitively rule out the role of surface cooling, but provide no evidence that it shifts the jet poleward. Further study with simplified models demonstrates that the response to stratospheric warming is remarkably generic and does not depend critically on the boundary conditions (e.g., the planetary wave forcing) or the atmospheric physics (e.g., the treatment of radiative transfer and moist processes). It does, however, fundamentally involve both zonal-mean and eddy circulation feedbacks. The timescales, seasonality, and structure of the response provide further insight into the mechanism, as well as its connection to modes of intrinsic natural variability. These findings have implications for the interpretation of comprehensive model studies and for post-volcanic prediction
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...