GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 11
    facet.materialart.
    Unbekannt
    Copernicus Publications (EGU)
    In:  Atmospheric Chemistry and Physics, 14 (23). pp. 13063-13079.
    Publikationsdatum: 2019-05-23
    Beschreibung: Observations and simple theoretical arguments suggest that the Northern Hemisphere (NH) stratospheric polar vortex is stronger in winters following major volcanic eruptions. However, recent studies show that climate models forced by prescribed volcanic aerosol fields fail to reproduce this effect. We investigate the impact of volcanic aerosol forcing on stratospheric dynamics, including the strength of the NH polar vortex, in ensemble simulations with the Max Planck Institute Earth System Model. The model is forced by four different prescribed forcing sets representing the radiative properties of stratospheric aerosol following the 1991 eruption of Mt. Pinatubo: two forcing sets are based on observations, and are commonly used in climate model simulations, and two forcing sets are constructed based on coupled aerosol–climate model simulations. For all forcings, we find that simulated temperature and zonal wind anomalies in the NH high latitudes are not directly impacted by anomalous volcanic aerosol heating. Instead, high-latitude effects result from enhancements in stratospheric residual circulation, which in turn result, at least in part, from enhanced stratospheric wave activity. High-latitude effects are therefore much less robust than would be expected if they were the direct result of aerosol heating. Both observation-based forcing sets result in insignificant changes in vortex strength. For the model-based forcing sets, the vortex response is found to be sensitive to the structure of the forcing, with one forcing set leading to significant strengthening of the polar vortex in rough agreement with observation-based expectations. Differences in the dynamical response to the forcing sets imply that reproducing the polar vortex responses to past eruptions, or predicting the response to future eruptions, depends on accurate representation of the space–time structure of the volcanic aerosol forcing.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    facet.materialart.
    Unbekannt
    Copernicus Publications (EGU)
    In:  Atmospheric Chemistry and Physics, 13 (18). pp. 9439-9446.
    Publikationsdatum: 2019-09-23
    Beschreibung: This special section of Atmospheric Chemistry and Physics gives an overview of scientific results, collected during a West Pacific ship expedition in October 2009 with the Research Vessel (R/V) Sonne. The cruise focussed on chemical interactions between the ocean surface and the atmosphere above the tropical West Pacific and was planned within the national research project TransBrom (www.geomar.de/~transbrom). TransBrom aimed to particularly investigate very short lived bromine compounds in the ocean and their transport to and relevance for the stratosphere. For this purpose, chemical and biological parameters were analysed in the ocean and in the atmosphere, accompanied by a high frequency of meteorological measurements, to derive new insights into the multidisciplinary research field. This introduction paper presents the scientific goals and the meteorological and oceanographic background. The main research findings of the TransBrom Sonne expedition are highlighted.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    Publikationsdatum: 2019-09-23
    Beschreibung: Emissions of halogenated very short-lived substances (VSLS) are poorly constrained. However, their inclusion in global models is required to simulate a realistic inorganic bromine (Bry) loading in both the troposphere, where bromine chemistry perturbs global oxidizing capacity, and in the stratosphere, where it is a major sink for ozone (O3). We have performed simulations using a 3-D chemical transport model (CTM) including three top-down and a single bottom-up derived emission inventory of the major brominated VSLS bromoform (CHBr3) and dibromomethane (CH2Br2). We perform the first concerted evaluation of these inventories, comparing both the magnitude and spatial distribution of emissions. For a quantitative evaluation of each inventory, model output is compared with independent long-term observations at National Oceanic and Atmospheric Administration (NOAA) ground-based stations and with aircraft observations made during the NSF HIAPER Pole-to-Pole Observations (HIPPO) project. For CHBr3, the mean absolute deviation between model and surface observation ranges from 0.22 (38%) to 0.78 (115%) parts per trillion (ppt) in the tropics, depending on emission inventory. For CH2Br2, the range is 0.17 (24%) to 1.25 (167%) ppt. We also use aircraft observations made during the 2011 "Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere" (SHIVA) campaign, in the tropical West Pacific. Here, the performance of the various inventories also varies significantly, but overall the CTM is able to reproduce observed CHBr3 well in the free troposphere using an inventory based on observed sea-to-air fluxes. Finally, we identify the range of uncertainty associated with these VSLS emission inventories on stratospheric bromine loading due to VSLS (BryVSLS). Our simulations show BryVSLS ranges from ~ 4.0 to 8.0 ppt depending on the inventory. We report an optimised estimate at the lower end of this range (~ 4 ppt) based on combining the CHBr3 and CH2Br2 inventories which give best agreement with the compilation of observations in the tropics.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Atmospheres, 117 (D4). D04101.
    Publikationsdatum: 2018-02-06
    Beschreibung: The preconditioning of major sudden stratospheric warmings (SSWs) is investigated with two long time series using reanalysis (ERA-40) and model (MAECHAM5/MPI-OM) data. Applying planetary wave analysis, we distinguish between wavenumber-1 and wavenumber-2 major SSWs based on the wave activity of zonal wavenumbers 1 and 2 during the prewarming phase. For this analysis an objective criterion to identify and classify the preconditioning of major SSWs is developed. Major SSWs are found to occur with a frequency of six and seven events per decade in the reanalysis and in the model, respectively, thus highlighting the ability of MAECHAM5/MPI-OM to simulate the frequency of major SSWs realistically. However, from these events only one quarter are wavenumber-2 major warmings, representing a low (similar to 0.25) wavenumber-2 to wavenumber-1 major SSW ratio. Composite analyses for both data sets reveal that the two warming types have different dynamics; while wavenumber-1 major warmings are preceded only by an enhanced activity of the zonal wavenumber-1, wavenumber-2 events are either characterized by only the amplification of zonal wavenumber-2 or by both zonal wavenumber-1 and zonal wavenumber-2, albeit at different time intervals. The role of tropospheric blocking events influencing these two categories of major SSWs is evaluated in the next step. Here, the composite analyses of both reanalysis and model data reveal that blocking events in the Euro-Atlantic sector mostly lead to the development of wavenumber-1 major warmings. The blocking-wavenumber-2 major warming connection can only be statistical reliable analyzed with the model time series, demonstrating that blocking events in the Pacific region mostly precede wavenumber-2 major SSWs.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    facet.materialart.
    Unbekannt
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 50 (6). pp. 1771-1786.
    Publikationsdatum: 2014-01-30
    Beschreibung: We investigated the effect of seasonal environmental changes on the rate and distribution of anaerobic oxidation of methane (AOM) in Eckernforde Bay sediments (German Baltic Sea) and identified organisms that are likely to be involved in the process. Surface sediments were sampled during September and March. Field rates of AOM and sulfate reduction (SR) were measured with radiotracer methods. Additional parameters were determined that potentially influence AOM, i.e., temperature, salinity, methane, sulfate, and chlorophyll a. Methanogenesis as well as potential rates of AOM and aerobic oxidation of methane were measured in vitro. AOM changed seasonally within the upper 20 cm of the sediment, with rates being between 1 and 14 nmol cm(-3) d(-1). Its distribution is suggested to be controlled by oxygen and sulfate penetration, temperature, as well as methane supply, leading to a shallow AOM zone during the warm productive season and to a slightly deeper AOM zone during the cold winter season. Rising methane bubbles apparently fed AOM above the sulfate-methane transition. Methanosarcinales-related anaerobic methanotrophs (ANME-2), identified with fluorescence in situ hybridization, is suggested to mediate AOM in Eckerntorde Bay. These archaea are known also from other marine methane-rich locations. However, they were not directly associated with sulfate-reducing bacteria. AOM is possibly mediated solely by these archaea that show a mesophilic physiology according to the seasonal temperature changes in Eckernforde Bay.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    Publikationsdatum: 2018-02-06
    Beschreibung: A comprehensive quality assessment of the ozone products from 18 limb-viewing satellite instruments is provided by means of a detailed inter-comparison. The ozone climatologies in the form of monthly zonal mean time series covering the upper troposphere to lower mesosphere are obtained from LIMS, SAGE I, SAGE II, UARS-MLS, HALOE, POAM II, POAM III, SMR, OSIRIS, SAGE III, MIPAS, GOMOS, SCIAMACHY, ACE-FTS, ACE-MAESTRO, Aura-MLS, HIRDLS, and SMILES within 1978-2010. The inter-comparisons focus on mean biases based on monthly and annual zonal mean fields, on inter-annual variability and on seasonal cycles. Additionally, the physical consistency of the data sets is tested through diagnostics of the quasi-biennial oscillation and the Antarctic ozone hole. The comprehensive evaluations reveal that the uncertainty in our knowledge of the atmospheric ozone mean state is smallest in the tropical middle stratosphere and in the midlatitude lower/middle stratosphere, where we find a 1σ multi-instrument spread of less than ±5%. While the overall agreement among the climatological data sets is very good for large parts of the stratosphere, individual discrepancies have been identified including unrealistic month-to-month fluctuations, large biases in particular atmospheric regions, or inconsistencies in the seasonal cycle. Notable differences between the data sets exist in the tropical lower stratosphere and at high latitudes, with a multi-instrument spread of ±30% at the tropical tropopause and ±15% at polar latitudes. In particular, large relative differences are identified in the Antarctic polar cap during the time of the ozone hole, with a spread between the monthly zonal mean fields of ±50%. Differences between the climatological data sets are suggested to be partially related to inter-instrumental differences in vertical resolution and geographical sampling. The evaluations as a whole provide guidance on what data sets are the most reliable for applications such as studies of ozone variability, model-measurement comparisons and detection of long-term trends. A detailed comparison versus SAGE II data is presented, which can help identify suitable candidates for long-term data merging studies.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    Publikationsdatum: 2019-09-23
    Beschreibung: Methyl iodide (CH3I}, bromoform (CHBr3) and dibromomethane (CH2Br2), which are produced naturally in the oceans, take part in ozone chemistry both in the troposphere and the stratosphere. The significance of oceanic upwelling regions for emissions of these trace gases in the global context is still uncertain although they have been identified as important source regions. To better quantify the role of upwelling areas in current and future climate, this paper analyzes major factors that influenced halocarbon emissions from the tropical North East Atlantic including the Mauritanian upwelling during the DRIVE expedition. Diel and regional variability of oceanic and atmospheric CH3I, CHBr3 and CH2Br2 was determined along with biological and meteorological parameters at six 24 h-stations. Low oceanic concentrations of CH3I from 0.1–5.4 pmol L-1 were equally distributed throughout the investigation area. CHBr3 of 1.0–42.4 pmol L-1 and CH2Br2 of 1.0–9.4 pmol L-1 were measured with maximum concentrations close to the Mauritanian coast. Atmospheric mixing rations of CH3I of up to 3.3, CHBr3 to 8.9 and CH2Br2 to 3.1 ppt above the upwelling and 1.8, 12.8, respectively 2.2 ppt at a Cape Verdean coast were detected during the campaign. While diel variability in CH3I emissions could be mainly ascribed to oceanic non-biological production, no main driver was identified for its emissions in the entire study region. In contrast, oceanic bromocarbons resulted from biogenic sources which were identified as regional drivers of their sea-to-air fluxes. The diel impact of wind speed on bromocarbon emissions increased with decreasing distance to the coast. The height of the marine atmospheric boundary layer (MABL) was determined as an additional factor influencing halocarbon emissions. Oceanic and atmospheric halocarbons correlated well in the study region and in combination with high oceanic CH3I, CHBr3 and CH2Br2 concentrations, local hot spots of atmospheric halocarbons could solely be explained by marine sources. This conclusion is in contrast with previous studies that hypothesized the occurrence of elevated atmospheric halocarbons over the eastern tropical Atlantic mainly originating from the West-African continent.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    Publikationsdatum: 2019-07-09
    Beschreibung: Most of the short-lived biogenic and anthropogenic chemical species that are emitted into the atmosphere break down efficiently by reaction with OH and do not reach the stratosphere. Here we show the existence of a pronounced minimum in the tropospheric column of ozone over the West Pacific, the main source region for stratospheric air, and suggest a corresponding minimum of the tropospheric column of OH. This has the potential to amplify the impact of surface emissions on the stratospheric composition compared to the impact when assuming globally uniform OH conditions. Specifically, the role of emissions of biogenic halogenated species for the stratospheric halogen budget and the role of increasing emissions of SO2 in Southeast Asia or from minor volcanic eruptions for the increasing stratospheric aerosol loading need to be reassessed in light of these findings. This is also important since climate change will further modify OH abundances and emissions of halogenated species. Our study is based on ozone sonde measurements carried out during the TransBrom cruise with the RV Sonne roughly along 140-150 degrees E in October 2009 and corroborating ozone and OH measurements from satellites, aircraft campaigns and FTIR instruments. Model calculations with the GEOS-Chem Chemistry and Transport Model (CTM) and the ATLAS CTM are used to simulate the tropospheric OH distribution over the West Pacific and the transport pathways to the stratosphere. The potential effect of the OH minimum on species transported into the stratosphere is shown via modeling the transport and chemistry of CH2Br2 and SO2.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    facet.materialart.
    Unbekannt
    In:  [Poster] In: WCRP OSC Climate Research in Service to Society, 24.-28.10.2011, Denver, USA .
    Publikationsdatum: 2012-02-23
    Beschreibung: Halogenated very short-lived substances (VSLS) are expected to contribute significantly to the stratospheric halogen loading and therefore to the stratospheric ozone chemistry. Our understanding of the highly variable emission of VSLS and their transport from the surface into the stratosphere is crucial to estimate their contribution to stratospheric halogen loading. In this study we investigate the relative impacts of emission rates, large scale and convective transport as well as wet and dry deposition on the contribution of VSLS to stratospheric ozone depletion. Therefore we have simulated the transport, washout and photochemical decay of VSLS with the Lagrangian particle dispersion model FLEXPART. The transport simulations are based on VSLS sea-to-air flux measurements obtained from the tropical Atlantic in October/November 2002 and from the tropical Western Pacific in October 2009. We show, that the spatial and temporal variability of emission rates, convective transport and dehydration processes in the TTL leads to strong variability in the overall transport of VSLS into the stratosphere. We will give estimates of the amount of VSLS and their organic product gases transported into the stratosphere and compare those to measurements form aircraft and balloon campaigns. In particular we will discuss the importance of methyl iodide emitted in the Western Pacific as a carrier of iodine into the upper troposphere and lower stratosphere. We will estimate the ozone depleting potential of the brominated and iodinated VSLS and discuss the relevance of VSLS emissions in the tropical Atlantic and tropical Western Pacific for stratospheric ozone chemistry.
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    facet.materialart.
    Unbekannt
    In:  [Poster] In: SONNE Statusseminar, 09.-10.02.2011, Hannover, Germany .
    Publikationsdatum: 2019-09-23
    Materialart: Conference or Workshop Item , NonPeerReviewed
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...