GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Keywords: Forschungsbericht ; Mittlere Atmosphäre ; Meer ; Spurengas ; Aerosol
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (31 Seiten, 1,92 MB) , Illustrationen, Diagramme
    Language: German
    Note: Förderkennzeichen BMBF 01LG1217A-B. - Verbund-Nummer 01140205 , Weitere Autoren dem Berichtsblatt entnommen. - Weitere durchführende Institution ist laut Berichtsblatt: KIT - Karlsruher Institut für Technologie , Sprache der Zusammenfassung: Deutsch, Englisch
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Kiel : Universitätsbibliothek Kiel
    Keywords: Hochschulschrift ; Bromoform ; Wasserverschmutzung
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (xi, 113, XXI Seiten) , Illustrationen, Diagramme
    DDC: 577.7
    Language: English
    Note: Enthält Aufsätze
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: Online-Ressource (PDF-Datei: 62 = 7 MB)
    Language: German
    Note: Zusammenfassung in deutscher und englischer Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Fiehn, Alina; Quack, Birgit; Hepach, Helmke; Fuhlbrügge, Steffen; Tegtmeier, Susann; Toohey, Matthew; Atlas, Elliot L; Krüger, Kirstin (2017): Delivery of halogenated very short-lived substances from the west Indian Ocean to the stratosphere during the Asian summer monsoon. Atmospheric Chemistry and Physics, 17(11), 6723-6741, https://doi.org/10.5194/acp-17-6723-2017
    Publication Date: 2023-01-13
    Description: During two cruises wiht RV Sonne, SO234-2 from 8 to 19 July 2014 (Durban, South Africa to Port Louis, Mauritius) and SO235 from 23 July to 7 August 2014 (Port Louis, Mauritius to Malé, Maldives), within the SPACES (Science Partnerships for the Assessment of Complex Earth System Processes) and OASIS (Organic very short-lived Substances and their air sea exchange from the Indian Ocean to the Stratosphere) research projects, surface water samples were sampled from a continuous running pump in the hydrographic shaft of RV Sonne at a depth of 5 m. Deep water samples were taken from a Niskin-bottle rosette sampler. The samples were then analyzed for halogenated compounds using a purge and trap system onboard, which was attached to a gas chromatograph with an electron capture detector for surface water samples and a GC/MS Agilent 5975 for the deep water samples. An analytical reproducibility of 10% was determined from measuring duplicate water samples, detection limit was 0.2 pmol /L. Calibration was performed with several dilutions of a mixed-compound standard prepared in methanol.
    Type: Dataset
    Format: application/zip, 97 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Tegtmeier, Susann; Hegglin, Michaela I; Anderson, John; Funke, Bernd; Gille, John C; Jones, Ashley; Smith, Lesley; von Clarmann, Thomas; Walker, Kaley A (2016): The SPARC Data Initiative: comparisons of CFC-11, CFC-12, HF and SF〈sub〉6〈/sub〉 climatologies from international satellite limb sounders. Earth System Science Data, 8(1), 61-78, https://doi.org/10.5194/essd-8-61-2016
    Publication Date: 2023-05-12
    Description: A quality assessment of the CFC-11 (CCl3F), CFC-12 (CCl2F2), HF, and SF6 products from limb-viewing satellite instruments is provided by means of a detailed intercomparison. The climatologies in the form of monthly zonal mean time series are obtained from HALOE, MIPAS, ACE-FTS, and HIRDLS within the time period 1991-2010. The intercomparisons focus on the mean biases of the monthly and annual zonal mean fields and aim to identify their vertical, latitudinal and temporal structure. The CFC evaluations (based on MIPAS, ACE-FTS and HIRDLS) reveal that the uncertainty in our knowledge of the atmospheric CFC-11 and CFC-12 mean state, as given by satellite data sets, is smallest in the tropics and mid-latitudes at altitudes below 50 and 20 hPa, respectively, with a 1sigma multi-instrument spread of up to ±5 %. For HF, the situation is reversed. The two available data sets (HALOE and ACE-FTS) agree well above 100 hPa, with a spread in this region of ±5 to ±10 %, while at altitudes below 100 hPa the HF annual mean state is less well known, with a spread ±30 % and larger. The atmospheric SF6 annual mean states derived from two satellite data sets (MIPAS and ACE-FTS) show only very small differences with a spread of less than ±5 % and often below ±2.5 %. While the overall agreement among the climatological data sets is very good for large parts of the upper troposphere and lower stratosphere (CFCs, SF6) or middle stratosphere (HF), individual discrepancies have been identified. Pronounced deviations between the instrument climatologies exist for particular atmospheric regions which differ from gas to gas. Notable features are differently shaped isopleths in the subtropics, deviations in the vertical gradients in the lower stratosphere and in the meridional gradients in the upper troposphere, and inconsistencies in the seasonal cycle. Additionally, long-term drifts between the instruments have been identified for the CFC-11 and CFC-12 time series. The evaluations as a whole provide guidance on what data sets are the most reliable for applications such as studies of atmospheric transport and variability, model-measurement comparisons and detection of long-term trends.
    Keywords: File name; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 146 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hepach, Helmke; Quack, Birgit; Tegtmeier, Susann; Engel, Anja; Bracher, Astrid; Fuhlbrügge, Steffen; Galgani, Luisa; Atlas, Elliot L; Lampel, Johannes; Frieß, Udo; Krüger, Kirstin (2016): Biogenic halocarbons from the Peruvian upwelling region as tropospheric halogen source. Atmospheric Chemistry and Physics, 16(18), 12219-12237, https://doi.org/10.5194/acp-16-12219-2016
    Publication Date: 2024-02-01
    Description: Halocarbons, halogenated short-chained hydrocarbons, are produced naturally in the oceans by biological and chemical processes. They are emitted from surface seawater into the atmosphere, where they take part in numerous chemical processes such as ozone destruction and the oxidation of mercury and dimethyl sulfide. Here we present oceanic and atmospheric halocarbon data for the Peruvian upwelling obtained during the M91 cruise onboard the research vessel Meteor in December 2012. Surface waters during the cruise were characterized by moderate concentrations of bromoform (CHBr3) and dibromomethane (CH2Br2) correlating with diatom biomass derived from marker pigment concentrations, which suggests this phytoplankton group as likely source. Concentrations measured for the iodinated compounds methyl iodide (CH3I) of up to 35.4 pmol L-1, chloroiodomethane (CH2ClI) of up to 58.1 pmol L-1 and diiodomethane (CH2I2) of up to 32.4 pmol L-1 in water samples were much higher than previously reported for the tropical Atlantic upwelling systems. Iodocarbons also correlated with the diatom biomass and even more significantly with dissolved organic matter (DOM) components measured in the surface water. Our results suggest a biological source of these compounds as significant driving factor for the observed large iodocarbon concentrations. Elevated atmospheric mixing ratios of CH3I (up to 3.2 ppt), CH2ClI (up to 2.5 ppt) and CH2I2 (3.3 ppt) above the upwelling were correlated with seawater concentrations and high sea-to-air fluxes. The enhanced iodocarbon production in the Peruvian upwelling contributed significantly to tropospheric iodine levels.
    Keywords: SOPRAN; Surface Ocean Processes in the Anthropocene
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-01
    Keywords: Bromoiodomethane; Chloroiodomethane; CT; DATE/TIME; DEPTH, water; Dibromochloromethane; Dibromomethane; Diiodomethane; Iodomethane; LATITUDE; LONGITUDE; M91; M91-track; Meteor (1986); SOPRAN; South Pacific Ocean; Surface Ocean Processes in the Anthropocene; Tetrachloromethane; Tribromomethane; Trichloroethane; Trichloromethane; Underway cruise track measurements
    Type: Dataset
    Format: text/tab-separated-values, 658 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-01
    Keywords: Bottle number; Bromoiodomethane; Chloroiodomethane; CTD/Rosette; CTD-033; CTD-035; CTD-036; CTD-038; CTD-039; CTD-041; CTD-043; CTD-046; CTD-048; CTD-049; CTD-051; CTD-052; CTD-055; CTD-058; CTD-059; CTD-060; CTD-061; CTD-064; CTD-065; CTD-074; CTD-075; CTD-080; CTD-083; CTD-087; CTD-088; CTD-089; CTD-090; CTD-092; CTD-093; CTD-094; CTD-095; CTD-096; CTD-097; CTD-RO; DATE/TIME; DEPTH, water; Dibromochloromethane; Dibromomethane; Diiodomethane; Event label; Iodomethane; Latitude of event; Longitude of event; M91; M91_1736-1; M91_1737-1; M91_1737-3; M91_1739-1; M91_1739-3; M91_1741-1; M91_1743-1; M91_1746-1; M91_1748-1; M91_1749-1; M91_1751-1; M91_1751-3; M91_1752-8; M91_1754-1; M91_1755-2; M91_1755-4; M91_1756-1; M91_1759-1; M91_1760-1; M91_1766-1; M91_1766-3; M91_1769-1; M91_1771-1; M91_1774-1; M91_1774-3; M91_1775-1; M91_1775-3; M91_1776-3; M91_1777-1; M91_1777-12; M91_1777-4; M91_1777-7; M91_1778-1; Meteor (1986); Optional event label; Sample code/label; SOPRAN; South Pacific Ocean; Surface Ocean Processes in the Anthropocene; Tetrachloromethane; Tribromomethane; Trichloroethane; Trichloromethane
    Type: Dataset
    Format: text/tab-separated-values, 1919 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-02
    Keywords: 19-Butanoyloxyfucoxanthin; 19-Hexanoyloxyfucoxanthin; Alloxanthin; alpha-Carotene, beta,epsilon-Carotene; Antheraxanthin; Astaxanthin; beta-Carotene, beta,beta-Carotene; Chlorophyll a; Chlorophyll b; Chlorophyll c1+c2; Chlorophyll c3; CT; CTD/Rosette; CTD-002; CTD-003; CTD-010; CTD-013; CTD-017; CTD-019; CTD-021; CTD-024; CTD-026; CTD-028; CTD-030; CTD-034; CTD-035; CTD-036; CTD-039; CTD-041; CTD-043; CTD-044; CTD-045; CTD-046; CTD-047; CTD-048; CTD-049; CTD-050; CTD-052; CTD-055; CTD-058; CTD-060; CTD-061; CTD-064; CTD-065; CTD-067; CTD-068; CTD-071; CTD-073; CTD-075; CTD-080; CTD-082; CTD-083; CTD-088; CTD-090; CTD-094; CTD-095; CTD-096; CTD-097; CTD-RO; DATE/TIME; DEPTH, water; Diadinoxanthin; Diatoxanthin; Dinoxanthin; Divinyl chlorophyll a; Divinyl chlorophyll b; Event label; Fucoxanthin; Gear; High Performance Liquid Chromatography (HPLC); LATITUDE; LONGITUDE; Lutein; M91; M91_1713-1; M91_1713-3; M91_1719-1; M91_1721-3; M91_1724-3; M91_1725-3; M91_1727-1; M91_1729-1; M91_1731-1; M91_1733-1; M91_1733-13; M91_1736-3; M91_1737-1; M91_1737-3; M91_1739-3; M91_1741-1; M91_1743-1; M91_1744-1; M91_1745-1; M91_1746-1; M91_1747-1; M91_1748-1; M91_1749-1; M91_1750-1; M91_1751-3; M91_1752-8; M91_1754-1; M91_1755-4; M91_1756-1; M91_1759-1; M91_1760-1; M91_1762-2; M91_1763-1; M91_1764-8; M91_1765-1; M91_1766-3; M91_1769-1; M91_1770-4; M91_1771-1; M91_1774-3; M91_1775-3; M91_1777-12; M91_1777-4; M91_1777-7; M91_1778-1; M91-track; Meteor (1986); Mg-2,4-divinyl pheoporphyrin a5 monomethyl ester; Neoxanthin; Peridinin; Phaeophorbide a; Pheophytin a; Pheophytin b; Pyropheophorbide a; Pyropheophytin a; Sample code/label; South Pacific Ocean; Underway cruise track measurements; Violaxanthin; Zeaxanthin
    Type: Dataset
    Format: text/tab-separated-values, 7378 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-06
    Description: Reanalysis data sets are widely used to understand atmospheric processes and past variability, and are often used to stand in as "observations" for comparisons with climate model output. Because of the central role of water vapor (WV) and ozone (O3) in climate change, it is important to understand how accurately and consistently these species are represented in existing global reanalyses. In this paper, we present the results of WV and O3 intercomparisons that have been performed as part of the SPARC (Stratosphere–troposphere Processes and their Role in Climate) Reanalysis Intercomparison Project (S-RIP). The comparisons cover a range of timescales and evaluate both inter-reanalysis and observation-reanalysis differences. We also provide a systematic documentation of the treatment of WV and O3 in current reanalyses to aid future research and guide the interpretation of differences amongst reanalysis fields. The assimilation of total column ozone (TCO) observations in newer reanalyses results in realistic representations of TCO in reanalyses except when data coverage is lacking, such as during polar night. The vertical distribution of ozone is also relatively well represented in the stratosphere in reanalyses, particularly given the relatively weak constraints on ozone vertical structure provided by most assimilated observations and the simplistic representations of ozone photochemical processes in most of the reanalysis forecast models. However, significant biases in the vertical distribution of ozone are found in the upper troposphere and lower stratosphere in all reanalyses. In contrast to O3, reanalysis estimates of stratospheric WV are not directly constrained by assimilated data. Observations of atmospheric humidity are typically used only in the troposphere, below a specified vertical level at or near the tropopause. The fidelity of reanalysis stratospheric WV products is therefore mainly dependent on the reanalyses' representation of the physical drivers that influence stratospheric WV, such as temperatures in the tropical tropopause layer, methane oxidation, and the stratospheric overturning circulation. The lack of assimilated observations and known deficiencies in the representation of stratospheric transport in reanalyses result in much poorer agreement amongst observational and reanalysis estimates of stratospheric WV. Hence, stratospheric WV products from the current generation of reanalyses should generally not be used in scientific studies.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...