GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (52 Blatt = 3,4 MB)
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (154 Blatt = 7 MB) , Illustrationen, Diagramme
    Language: English
    Note: Zusammenfassung in deutscher und englischer Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Global biogeochemical cycles, Hoboken, NJ : Wiley, 1987, 23(2009), 1944-9224
    In: volume:23
    In: year:2009
    In: extent:11
    Description / Table of Contents: The oceans absorb and store a significant portion of anthropogenic CO2 emissions, but large uncertainties remain in the quantification of this sink. An improved assessment of the present and future oceanic carbon sink is therefore necessary to provide recommendations for long-term global carbon cycle and climate policies. The formation of North Atlantic Deep Water (NADW) is a unique fast track for transporting anthropogenic CO2 into the ocean's interior, making the deep waters rich in anthropogenic carbon. Thus the Atlantic is presently estimated to hold 38% of the oceanic anthropogenic CO2 inventory, although its volume makes up only 25% of the world ocean. Here we analyze the inventory change of anthropogenic CO2 in the Atlantic between 1997 and 2003 and its relationship to NADW formation. For the whole region between 20°S and 65°N the inventory amounts to 32.5 ± 9.5 Petagram carbon (Pg C) in 1997 and increases up to 36.0 ± 10.5 Pg C in 2003. This result is quite similar to earlier studies. Moreover, the overall increase of anthropogenic carbon is in close agreement with the expected change due to rising atmospheric CO2 levels of 1.69% a-1. On the other hand, when considering the subpolar region only, the results demonstrate that the recent weakening in the formation of Labrador Sea Water, a component of NADW, has already led to a decrease of the anthropogenic carbon inventory in this water mass. As a consequence, the overall inventory for the total water column in the western subpolar North Atlantic increased only by 2% between 1997 and 2003, much less than the 11% that would be expected from the increase in atmospheric CO2 levels.
    Type of Medium: Online Resource
    Pages: 11 , graph. Darst
    ISSN: 1944-9224
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Annual review of marine science, Palo Alto, Calif. : Annual Reviews, 2009, 2(2010), Seite 175-198, 1941-0611
    In: volume:2
    In: year:2010
    In: pages:175-198
    Description / Table of Contents: A significant impetus for recent ocean biogeochemical research has been to better understand the ocean's role as a sink for anthropogenic CO2. In the 1990s the global carbon survey of the World Ocean Circulation Experiment (WOCE) and the Joint Global Ocean Flux Study (JGOFS) inspired the development of several approaches for estimating anthropogenic carbon inventories in the ocean interior. Most approaches agree that the total global ocean inventory of Cant was around 120 Pg C in the mid-1990s. Today, the ocean carbon uptake rate estimates suggest that the ocean is not keeping pace with the CO2 emissions growth rate. Repeat occupations of the WOCE/JGOFS survey lines consistently show increases in carbon inventories over the last decade, but have not yet been synthesized enough to verify a slowdown in the carbon storage rate. There are many uncertainties in the future ocean carbon storage. Continued observations are necessary to monitor changes and understand mechanisms controlling ocean carbon uptake and storage in the future.
    Type of Medium: Online Resource
    Pages: graph. Darst
    ISSN: 1941-0611
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Earth system science data, Katlenburg-Lindau : Copernics Publications, 2009, 1(2009), Seite 7-24, 1866-3516
    In: volume:1
    In: year:2009
    In: pages:7-24
    Description / Table of Contents: Data on carbon and carbon-relevant hydrographic and hydrochemical parameters from previously non-publicly available cruise data sets in the Arctic, Atlantic and Southern Ocean have been retrieved and merged to a new database: CARINA (CARbon IN the Atlantic). These data have gone through rigorous quality control (QC) procedures to assure the highest possible quality and consistency. The data for most of the measured parameters in the CARINA data base were objectively examined in order to quantify systematic differences in the reported values, i.e. secondary quality control. Systematic biases found in the data have been corrected in the data products, i.e. three merged data files with measured, calculated and interpolated data for each of the three CARINA regions; Arctic Mediterranean Seas, Atlantic and Southern Ocean. Out of a total of 188 cruise entries in the CARINA database, 98 were conducted in the Atlantic Ocean and of these 84 cruises report nitrate values, 79 silicate, and 78 phosphate. Here we present details of the secondary QC for nutrients for the Atlantic Ocean part of CARINA. Procedures of quality control, including crossover analysis between cruises and inversion analysis of all crossover data are briefly described. Adjustments were applied to the nutrient values for 43 of the cruises in the Atlantic Ocean region. With these adjustments the CARINA database is consistent both internally as well as with GLODAP data, an oceanographic data set based on the World Hydrographic Program in the 1990s (Key et al., 2004). Based on our analysis we estimate the internal accuracy of the CARINA-ATL nutrient data to be: nitrate 1.5%; phosphate 2.6%; silicate 3.1%. The CARINA data are now suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation.
    Type of Medium: Electronic Resource
    Pages: graph. Darst
    ISSN: 1866-3516
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Earth system science data, Katlenburg-Lindau : Copernics Publications, 2009, 2(2010), 1, Seite 1-15, 1866-3516
    In: volume:2
    In: year:2010
    In: number:1
    In: pages:1-15
    Description / Table of Contents: Water column data of carbon and carbon-relevant parameters have been collected and merged into a new database called CARINA (CARbon IN the Atlantic). In order to provide a consistent data set, all data have been examined for systematic biases and adjusted if necessary (secondary quality control (QC)). The CARINA data set is divided into three regions: the Arctic/Nordic Seas, the Atlantic region and the Southern Ocean. Here we present the CFC data for the Atlantic region, including the chlorofluorocarbons CFC-11, CFC-12 and CFC-113 as well as carbon tetrachloride (CCl4). The methods applied for the secondary quality control, a crossover analyses, the investigation of CFC ratios in the ocean and the CFC surface saturation are presented. Based on the results, the CFC data of some cruises are adjusted by a certain factor or given a "poor" quality flag.
    Type of Medium: Online Resource
    Pages: graph. Darst
    ISSN: 1866-3516
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-01-31
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 2023-01-31
    Description: Lateral diffusivity is computed from a tracer release experiment in the northeastern tropical Atlantic thermocline. The uncertainties of the estimates are inferred from a synthetic particle release using a high-resolution ocean circulation model. The main method employed to compute zonal and meridional components of lateral diffusivity is the growth of the second moment of a cloud of tracer. The application of an areal comparison method for estimating tracer-based diffusivity in the field experiments is also discussed. The best estimate of meridional eddy diffusivity in the Guinea Upwelling region at about 300 m depth is estimated to be inline image m2 s−1. The zonal component of lateral diffusivity is estimated to be inline image m2 s−1, while areal comparison method yields areal equivalent zonal diffusivity component of inline image m2 s−1. In comparison to Ky, Kx is about twice larger, resulting from the tracer patch stretching by zonal jets. Employed conceptual jet model indicates that zonal jet velocities of about inline image m s−1 are required to explain the enhancement of the zonal eddy diffusivity component. Finally, different sampling strategies are tested on synthetic tracer release experiments. They indicate that the best sampling strategy is a sparse regular sampling grid covering most of the tracer patch.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-06
    Description: The Ocean Model Intercomparison Project (OMIP) focuses on the physics and biogeochemistry of the ocean component of Earth system models participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6). OMIP aims to provide standard protocols and diagnostics for ocean models, while offering a forum to promote their common assessment and improvement. It also offers to compare solutions of the same ocean models when forced with reanalysis data (OMIP simulations) vs. when integrated within fully coupled Earth system models (CMIP6). Here we detail simulation protocols and diagnostics for OMIP's biogeochemical and inert chemical tracers. These passive-tracer simulations will be coupled to ocean circulation models, initialized with observational data or output from a model spin-up, and forced by repeating the 1948–2009 surface fluxes of heat, fresh water, and momentum. These so-called OMIP-BGC simulations include three inert chemical tracers (CFC-11, CFC-12, SF6) and biogeochemical tracers (e.g., dissolved inorganic carbon, carbon isotopes, alkalinity, nutrients, and oxygen). Modelers will use their preferred prognostic BGC model but should follow common guidelines for gas exchange and carbonate chemistry. Simulations include both natural and total carbon tracers. The required forced simulation (omip1) will be initialized with gridded observational climatologies. An optional forced simulation (omip1-spunup) will be initialized instead with BGC fields from a long model spin-up, preferably for 2000 years or more, and forced by repeating the same 62-year meteorological forcing. That optional run will also include abiotic tracers of total dissolved inorganic carbon and radiocarbon, CTabio and 14CTabio, to assess deep-ocean ventilation and distinguish the role of physics vs. biology. These simulations will be forced by observed atmospheric histories of the three inert gases and CO2 as well as carbon isotope ratios of CO2. OMIP-BGC simulation protocols are founded on those from previous phases of the Ocean Carbon-Cycle Model Intercomparison Project. They have been merged and updated to reflect improvements concerning gas exchange, carbonate chemistry, and new data for initial conditions and atmospheric gas histories. Code is provided to facilitate their implementation.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...