GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (52 Blatt = 3,4 MB)
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 104 (1991), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: We present a boundary-layer model for mantle plumes driven by thermal and chemical diffusion and buoyancy. The problem is solved for a Boussinesq, Newtonian fluid with infinite Prandtl number and constant physical properties. We focus on axisymmetric mantle plumes, but also solve 2-D plumes due to line-sources for comparison. The results show that chemical plumes are much thinner than thermal plumes because of small chemical diffusivity in the mantle. When pressure-release partial melting occurs in a thermal-chemical plume, at least two mantle components may be involved: one from the chemical plume and one from the ambient mantle. A buoyant chemical boundary layer in the plume source region tends to cause narrow and strong plumes. A dense chemical source would have the opposite effect. The effects of chemical buoyancy diminish as the Lewis number, the ratio of thermal to chemical diffusivity, increases. For fully developed mantle plumes, the effects of chemical buoyancy may be insignificant. The physical parameters of mantle plumes may be estimated using surface information deduced from swell models. The total heat input from the Hawaiian plume source is about 1.3 times 1011 W, nearly 5–10 per cent of the total heat loss from the core. The depth of the Hawaiian plume source is constrained to be near the core-mantle boundary. Our results show that 2-D plumes are generally stronger than axisymmetric plumes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 146 (1996), S. 447-467 
    ISSN: 1420-9136
    Keywords: Continental extension ; crustal shortening ; metamorphic core complex ; Basin and Range
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract This paper examines the first-order dynamic interactions between crustal shortening, extension, and volcanism in tectonic evolution in the North American Cordillera. The protracted crustal compression in the Mesozoic and early Cenozoic (110−55 Ma) contributed to the subsequent Tertiary extension by thermally weakening the lithosphere and producing an overthickened (〉50 km) and gravitationally unstable crust. In addition to post-kinematic burial heating, synkinematic thermal processes including conduction are shown significantly because of the long period of crustal contraction and the slow shortening rates (〈4 mm/yr). The effects of shear heating were probably limited for the same reasons. Localized delamination of the lithospheric mantle may have contributed to the abundant plutonism and high crustal temperature in the southeastern Canadian Cordillera at the end of the orogeny. Most early-stage extension in the Cordillera, characterized by formation of metamorphic core complexes, resulted from gravitational collapse of the overthickened crust. Plutionism may have facilitated strain localization, causing widespread crustal extension at relatively low stress levels. Crustal collapse, however, was unlikely the direct cause of the Basin-Range extension, because the gravitational stresses induced by crustal thickening are limited to the crust; only a small fraction of the gravitational stresses may be transmitted to the lithospheric mantle. Nor could core complex formation induce the voluminous mid-Tertiary volcanism, which requires major upwelling of the asthenosphere. While the causes of the asthenospheric upwelling are not clear, such processes could provide the necessary conditions for the Basin-Range extension: the driving force from thermally induced gravitational potential and a thermally weakened lithosphere. The complicated spatial and temporal patterns of volcanism and extension in the Basin and Range province may be partially due to the time-dependent competing effects of thermal weakening and rheological hardening associated with intrusion and underplating of mantle-derived magmas.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  [Poster] In: SOLAS Open Science Conference, 07.-11.09.2015, Kiel, Germany .
    Publication Date: 2015-12-14
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  (Master thesis), Christian-Albrechts-Universität Kiel, Kiel, Germany, 45 pp
    Publication Date: 2016-12-13
    Keywords: Course of study: MSc Climate Physics
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Ocean Science Discussions .
    Publication Date: 2021-03-05
    Description: The distribution of the main water masses in the Atlantic Ocean are investigated with the Optimal Multi-Parameter (OMP) method. The properties of the main water masses in the Atlantic Ocean are described in a companion article; here these definitions are used to map out the general distribution of those water masses. Six key properties, including conservative (potential temperature and salinity) and non-conservative (oxygen, silicate, phosphate and nitrate), are incorporated into the OMP analysis to determine the contribution of the water masses in the Atlantic Ocean based on the GLODAP v2 observational data. To facilitate the analysis the Atlantic Ocean is divided into four vertical layers based on potential density. Due to the high seasonal variability in the mixed layer, this layer is excluded from the analysis. Central waters are the main water masses in the upper/central layer, generally featuring high potential temperature and salinity and low nutrient concentrations and are easily distinguished from the intermediate water masses. In the intermediate layer, the Antarctic Intermediate Water (AAIW) from the south can be detected to ~30°N, whereas the Subarctic Intermediate Water (SAIW), having similarly low salinity to the AAIW flows from the north. Mediterranean Overflow Water (MOW) flows from the Strait of Gibraltar as a high salinity water. NADW dominates the deep and overflow layer both in the North and South Atlantic. In the bottom layer, AABW is the only natural water mass with high silicate signature spreading from the Antarctic to the North Atlantic. Due to the change of water mass properties, in this work we renamed to North East Antarctic Bottom Water NEABW north of the equator. Similarly, the distributions of Labrador Sea Water (LSW), Iceland Scotland Overflow Water (ISOW), and Denmark Strait Overflow Water (DSOW) forms upper and lower portion of NADW, respectively roughly south of the Grand Banks between ~50 and 66°N. In the far south the distributions of Circumpolar Deep Water (CDW) and Weddell Sea Bottom Water (WSBW) are of significance to understand the formation of the AABW.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-11-08
    Description: Transient tracer data (CFC-12 and SF6) from three oceanographic field campaigns to the Mauritanian Upwelling area conducted during winter, spring and summer from 2005 to 2007 is presented. The transient tracers are used to constrain a possible solution to the transient time distribution (TTD) along 18°N and to quantify the mean ages in vertical sections perpendicular to the coast. We found that an Inverse Gaussian distribution where the ratio of the moments δ and Γ equals 1.2 is a possible solution (δ/Γ=1.2) of the TTD. The transient tracers further show considerable under-saturation in the mixed layer during the winter and spring cruises that can only be maintained by mixing or upwelling by tracer-poor water from below the mixed layer. We use dissipation data from microstructure measurements and the tracer depth distribution to quantify the flux of tracers to the mixed layer by vertical diffusivity and wind data from the ship to quantify the air-sea flux. We then use the magnitude of the under-saturation in the mixed layer to estimate the advective upwelling velocity which is the balance the first two processes, in a steady state assumption. We find that the upwelling velocities range from less than 1 to 5.6×10-5ms-1 (〈0.8-4.8md-1), with generally higher values close to the coast, but with comparable upwelling velocities during spring and winter. During the summer cruise the transient tracers were close to equilibrium with the atmosphere, suggesting no upwelling. We have shown the use of CFC-12 and SF6 transient tracer data for calculating upwelling velocity, and found an overall uncertainty of roughly ±50%.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  (PhD/ Doctoral thesis), Christian-Albrechts-Universität Kiel, Kiel, Germany, 133 pp
    Publication Date: 2022-01-31
    Description: Properties of seawater in the ocean are not uniformly distributed. Characteristics in different regions and depths are significantly different. Understanding of the distribution and variation of seawater plays an important role in investigating the thermohaline circulation of the world ocean or predicting climate changes. A body of seawater that originates in a particular area and shares a common formation history always has similar properties and such a water body is defined as a water mass. Source water type defines the properties of the original water mass in the formation area. The properties of water masses do not stay constant but change along the flow path due to biogeochemical changes and also due to the mixing with surrounding water masses so that the OMP method is required to investigate the distribution of water masses. The OMP method is to calculate the best components and fractions of more water masses by analyzing water properties (potential temperature, salinity, oxygen, phosphate nitrate and silicate in this study) and solving the equations of linear mixing without assumptions. With the applications of transient tracers (such as: CFC-12 and SF6), water masses can be labeled and their mean ages (consuming time during the pathway from formation area) are calculated. Combining the distributions and mean ages, the transport time and velocities of water masses can be estimated.
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    Publication Date: 2024-02-07
    Description: A large number of water masses are presented in the Atlantic Ocean, and knowledge of their distributions and properties is important for understanding and monitoring of a range of oceanographic phenomena. The characteristics and distributions of water masses in biogeochemical space are useful for, in particular, chemical and biological oceanography to understand the origin and mixing history of water samples. Here, we define the characteristics of the major water masses in the Atlantic Ocean as source water types (SWTs) from their formation areas, and map out their distributions. The SWTs are described by six properties taken from the biased-adjusted Global Ocean Data Analysis Project version 2 (GLODAPv2) data product, including both conservative (conservative temperature and absolute salinity) and non-conservative (oxygen, silicate, phosphate and nitrate) properties. The distributions of these water masses are investigated with the use of the optimum multi-parameter (OMP) method and mapped out. The Atlantic Ocean is divided into four vertical layers by distinct neutral densities and four zonal layers to guide the identification and characterization. The water masses in the upper layer originate from wintertime subduction and are defined as central waters. Below the upper layer, the intermediate layer consists of three main water masses: Antarctic Intermediate Water (AAIW), Subarctic Intermediate Water (SAIW) and Mediterranean Water (MW). The North Atlantic Deep Water (NADW, divided into its upper and lower components) is the dominating water mass in the deep and overflow layer. The origin of both the upper and lower NADW is the Labrador Sea Water (LSW), the Iceland–Scotland Overflow Water (ISOW) and the Denmark Strait Overflow Water (DSOW). The Antarctic Bottom Water (AABW) is the only natural water mass in the bottom layer, and this water mass is redefined as Northeast Atlantic Bottom Water (NEABW) in the north of the Equator due to the change of key properties, especially silicate. Similar with NADW, two additional water masses, Circumpolar Deep Water (CDW) and Weddell Sea Bottom Water (WSBW), are defined in the Weddell Sea region in order to understand the origin of AABW.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-05-16
    Description: The EMBO Journal 32, 1425 (2013). doi:10.1038/emboj.2013.88 Authors: Weiqiang Lin, Shilpa Sampathi, Huifang Dai, Changwei Liu, Mian Zhou, Jenny Hu, Qin Huang, Judith Campbell, Kazuo Shin-Ya, Li Zheng, Weihang Chai & Binghui Shen Efficient and faithful replication of telomeric DNA is critical for maintaining genome integrity. The G-quadruplex (G4) structure arising in the repetitive TTAGGG sequence is thought to stall replication forks, impairing efficient telomere replication and leading to telomere instabilities. However, pathways modulating telomeric G4 are poorly
    Keywords: aneuploidycancerDNA2 nucleaseG4telomere
    Print ISSN: 0261-4189
    Electronic ISSN: 1460-2075
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...