GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 118 (2013): 5439–5460, doi:10.1002/jgrc.20369.
    Description: Underway and in situ observations of surface ocean pCO2, combined with satellite data, were used to develop pCO2 regional algorithms to analyze the seasonal and interannual variability of surface ocean pCO2 and sea-air CO2 flux for five physically and biologically distinct regions of the eastern North American continental shelf: the South Atlantic Bight (SAB), the Mid-Atlantic Bight (MAB), the Gulf of Maine (GoM), Nantucket Shoals and Georges Bank (NS+GB), and the Scotian Shelf (SS). Temperature and dissolved inorganic carbon variability are the most influential factors driving the seasonality of pCO2. Estimates of the sea-air CO2 flux were derived from the available pCO2 data, as well as from the pCO2 reconstructed by the algorithm. Two different gas exchange parameterizations were used. The SS, GB+NS, MAB, and SAB regions are net sinks of atmospheric CO2 while the GoM is a weak source. The estimates vary depending on the use of surface ocean pCO2 from the data or algorithm, as well as with the use of the two different gas exchange parameterizations. Most of the regional estimates are in general agreement with previous studies when the range of uncertainty and interannual variability are taken into account. According to the algorithm, the average annual uptake of atmospheric CO2 by eastern North American continental shelf waters is found to be between −3.4 and −5.4 Tg C yr−1 (areal average of −0.7 to −1.0 mol CO2 m−2 yr−1) over the period 2003–2010.
    Description: We wish to acknowledge the NASA Ocean Biology and Biogeochemistry program for providing funds for this project.
    Keywords: Coastal carbon ; Sea-air CO2 fluxes ; North American east coast
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2015. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 28, no. 2 (2015): 30-39, doi:10.5670/oceanog.2015.29.
    Description: Over the past decade, ocean acidification (OA) has emerged as a major concern in ocean science. The field of OA is based on certainties—uptake of carbon dioxide into the global ocean alters its carbon chemistry, and many marine organisms, especially calcifiers, are sensitive to this change. However, the field must accommodate uncertainties about the seriousness of these impacts as it synthesizes and draws conclusions from multiple disciplines. There is pressure from stakeholders to expeditiously inform society about the extent to which OA will impact marine ecosystems and the people who depend on them. Ultimately, decisions about actions related to OA require evaluating risks about the likelihood and magnitude of these impacts. As the scientific literature accumulates, some of the uncertainty related to single-species sensitivity to OA is diminishing. Difficulties remain in scaling laboratory results to species and ecosystem responses in nature, though modeling exercises provide useful insight. As recognition of OA grows, scientists’ ability to communicate the certainties and uncertainties of our knowledge on OA is crucial for interaction with decision makers. In this regard, there are a number of valuable practices that can be drawn from other fields, especially the global climate change community. A generally accepted set of best practices that scientists follow in their discussions of uncertainty would be helpful for the community engaged in ocean acidification.
    Description: NOAA Ocean Acidification Program and National Marine Fisheries Service (DSB, MP), NSF-supported Center for Climate and Energy Decision Making (SCD), and NASA Ocean Biology and Biogeochemistry Program (SS).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2015. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 28, no. 2 (2015): 182-197, doi:10.5670/oceanog.2015.41.
    Description: New England coastal and adjacent Nova Scotia shelf waters have a reduced buffering capacity because of significant freshwater input, making the region’s waters potentially more vulnerable to coastal acidification. Nutrient loading and heavy precipitation events further acidify the region’s poorly buffered coastal waters. Despite the apparent vulnerability of these waters, and fisheries’ and mariculture’s significant dependence on calcifying species, the community lacks the ability to confidently predict how the region’s ecosystems will respond to continued ocean and coastal acidification. Here, we discuss ocean and coastal acidification processes specific to New England coastal and Nova Scotia shelf waters and review current understanding of the biological consequences most relevant to the region. We also identify key research and monitoring needs to be addressed and highlight existing capacities that should be leveraged to advance a regional understanding of ocean and coastal acidification.
    Description: This project was supported in part by an appointment to the Internship/Research Participation Program at the Office of Water, US Environmental Protection Agency (EPA), administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the US Department of Energy and the EPA. JS acknowledges support from NASA grant from NNX14AL84G NASA-CCS.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/vnd.ms-excel
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 32 (2018): 389-416, doi:10.1002/2017GB005790.
    Description: Carbon cycling in the coastal zone affects global carbon budgets and is critical for understanding the urgent issues of hypoxia, acidification, and tidal wetland loss. However, there are no regional carbon budgets spanning the three main ecosystems in coastal waters: tidal wetlands, estuaries, and shelf waters. Here we construct such a budget for eastern North America using historical data, empirical models, remote sensing algorithms, and process‐based models. Considering the net fluxes of total carbon at the domain boundaries, 59 ± 12% (± 2 standard errors) of the carbon entering is from rivers and 41 ± 12% is from the atmosphere, while 80 ± 9% of the carbon leaving is exported to the open ocean and 20 ± 9% is buried. Net lateral carbon transfers between the three main ecosystem types are comparable to fluxes at the domain boundaries. Each ecosystem type contributes substantially to exchange with the atmosphere, with CO2 uptake split evenly between tidal wetlands and shelf waters, and estuarine CO2 outgassing offsetting half of the uptake. Similarly, burial is about equal in tidal wetlands and shelf waters, while estuaries play a smaller but still substantial role. The importance of tidal wetlands and estuaries in the overall budget is remarkable given that they, respectively, make up only 2.4 and 8.9% of the study domain area. This study shows that coastal carbon budgets should explicitly include tidal wetlands, estuaries, shelf waters, and the linkages between them; ignoring any of them may produce a biased picture of coastal carbon cycling.
    Description: NASA Interdisciplinary Science program Grant Number: NNX14AF93G; NASA Carbon Cycle Science Program Grant Number: NNX14AM37G; NASA Ocean Biology and Biogeochemistry Program Grant Number: NNX11AD47G; National Science Foundation's Chemical Oceanography Program Grant Number: OCE‐1260574
    Description: 2018-10-04
    Keywords: Carbon cycle ; Coastal zone ; Tidal wetlands ; Estuaries ; Shelf waters
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...