GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Publication Date: 2024-03-15
    Description: This study assessed the energy budget for juvenile Atlantic Sea Scallop, Placopecten magellanicus, during a natural drop in temperature (15.6°C to 5.8°C) over an 8-week time period during the fall at three different enrichment levels of carbon dioxide (CO2). Every 2 weeks, individuals were sampled for ecophysiological measurements of feeding activity, respiration rate (RR) and excretion rate (ER) to enable the calculation of scope for growth (SFG) and atomic oxygen:nitrogen ratios (O:N). In addition, 36 individuals per treatment were removed for shell height, dry tissue weight (DTW) and dry shell weight (DSW). We found a significant decrease in feeding rates as CO2 increased. Those rates also were significantly affected by temperature, with highest feeding at 9.4°C. No significant CO2 effect was observed for catabolic energy processes (RR and ER); however, these rates did increase significantly with temperature. The O:N ratio was not significantly affected by CO2, but was significantly affected by temperature. There was a significant interaction between CO2 and temperature for ER and the O:N ratio, with low CO2 levels resulting in a U-shaped response that was not sustained as CO2 levels increased. This suggests that the independent effects of CO2 and temperature observed at low levels are different once a CO2 threshold is reached. Additionally, there were significant differences in growth estimators (shell height and DSW), with the best growth occurring at the lowest CO2 level. In contrast to temperature variations that induced a trade-off response in energy acquisition and expenditure, results from this research support the hypothesis that sea scallops have a limited ability to alter physiological processes to compensate for increasing CO2.
    Keywords: Alkalinity, total; Ammonia excretion; Animalia; Aragonite saturation state; Assimilated energy; Assimilation efficiency; Assimilation rate; Behaviour; Benthic animals; Benthos; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Cape_Elizabeth; Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Catabolic energy; Cell density; Clearance rate; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Date; Day of experiment; Energy, per food mass; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Ingestion rate, organic weight; Inorganic matter, particulate; Laboratory experiment; Mollusca; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Organic matter, particulate; Other metabolic rates; Other studied parameter or process; Oxygen/Nitrogen ratio; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Placopecten magellanicus; Replicate; Respiration; Respiration rate, oxygen; Salinity; Scope for growth; Shell, dry mass; Shell height; Shell thickness; Shell width; Single species; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Suspended matter, total; Temperate; Temperature; Temperature, water; Tissue, dry mass; Treatment; Type
    Type: Dataset
    Format: text/tab-separated-values, 39247 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2015. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 28, no. 2 (2015): 30-39, doi:10.5670/oceanog.2015.29.
    Description: Over the past decade, ocean acidification (OA) has emerged as a major concern in ocean science. The field of OA is based on certainties—uptake of carbon dioxide into the global ocean alters its carbon chemistry, and many marine organisms, especially calcifiers, are sensitive to this change. However, the field must accommodate uncertainties about the seriousness of these impacts as it synthesizes and draws conclusions from multiple disciplines. There is pressure from stakeholders to expeditiously inform society about the extent to which OA will impact marine ecosystems and the people who depend on them. Ultimately, decisions about actions related to OA require evaluating risks about the likelihood and magnitude of these impacts. As the scientific literature accumulates, some of the uncertainty related to single-species sensitivity to OA is diminishing. Difficulties remain in scaling laboratory results to species and ecosystem responses in nature, though modeling exercises provide useful insight. As recognition of OA grows, scientists’ ability to communicate the certainties and uncertainties of our knowledge on OA is crucial for interaction with decision makers. In this regard, there are a number of valuable practices that can be drawn from other fields, especially the global climate change community. A generally accepted set of best practices that scientists follow in their discussions of uncertainty would be helpful for the community engaged in ocean acidification.
    Description: NOAA Ocean Acidification Program and National Marine Fisheries Service (DSB, MP), NSF-supported Center for Climate and Energy Decision Making (SCD), and NASA Ocean Biology and Biogeochemistry Program (SS).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...