GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-06-07
    Description: The Last Interglacial period (LIG) is a period with increased summer insolation at high northern latitudes, which results in strong changes in the terrestrial and marine cryosphere. Understanding the mechanisms for this response via climate modelling and comparing the models' representation of climate reconstructions is one of the objectives set up by the Paleoclimate Modelling Intercomparison Project for its contribution to the sixth phase of the Coupled Model Intercomparison Project. Here we analyse the results from 16 climate models in terms of Arctic sea ice. The multi-model mean reduction in minimum sea ice area from the pre industrial period (PI) to the LIG reaches 50 % (multi-model mean LIG area is 3.20×106 km2, compared to 6.46×106 km2 for the PI). On the other hand, there is little change for the maximum sea ice area (which is 15–16×106 km2 for both the PI and the LIG. To evaluate the model results we synthesise LIG sea ice data from marine cores collected in the Arctic Ocean, Nordic Seas and northern North Atlantic. The reconstructions for the northern North Atlantic show year-round ice-free conditions, and most models yield results in agreement with these reconstructions. Model–data disagreement appear for the sites in the Nordic Seas close to Greenland and at the edge of the Arctic Ocean. The northernmost site with good chronology, for which a sea ice concentration larger than 75 % is reconstructed even in summer, discriminates those models which simulate too little sea ice. However, the remaining models appear to simulate too much sea ice over the two sites south of the northernmost one, for which the reconstructed sea ice cover is seasonal. Hence models either underestimate or overestimate sea ice cover for the LIG, and their bias does not appear to be related to their bias for the pre-industrial period. Drivers for the inter-model differences are different phasing of the up and down short-wave anomalies over the Arctic Ocean, which are associated with differences in model albedo; possible cloud property differences, in terms of optical depth; and LIG ocean circulation changes which occur for some, but not all, LIG simulations. Finally, we note that inter-comparisons between the LIG simulations and simulations for future climate with moderate (1 % yr−1) CO2 increase show a relationship between LIG sea ice and sea ice simulated under CO2 increase around the years of doubling CO2. The LIG may therefore yield insight into likely 21st century Arctic sea ice changes using these LIG simulations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-01
    Description: The modeling of paleoclimate, using physically based tools, is increasingly seen as a strong out-of-sample test of the models that are used for the projection of future climate changes. New to the Coupled Model Intercomparison Project (CMIP6) is the Tier 1 Last Interglacial experiment for 127 000 years ago (lig127k), designed to address the climate responses to stronger orbital forcing than the midHolocene experiment, using the same state-of-the-art models as for the future and following a common experimental protocol. Here we present a first analysis of a multi-model ensemble of 17 climate models, all of which have completed the CMIP6 DECK (Diagnostic, Evaluation and Characterization of Klima) experiments. The equilibrium climate sensitivity (ECS) of these models varies from 1.8 to 5.6 ∘C. The seasonal character of the insolation anomalies results in strong summer warming over the Northern Hemisphere continents in the lig127k ensemble as compared to the CMIP6 piControl and much-reduced minimum sea ice in the Arctic. The multi-model results indicate enhanced summer monsoonal precipitation in the Northern Hemisphere and reductions in the Southern Hemisphere. These responses are greater in the lig127k than the CMIP6 midHolocene simulations as expected from the larger insolation anomalies at 127 than 6 ka. New synthesis for surface temperature and precipitation, targeted for 127 ka, have been developed for comparison to the multi-model ensemble. The lig127k model ensemble and data reconstructions are in good agreement for summer temperature anomalies over Canada, Scandinavia, and the North Atlantic and for precipitation over the Northern Hemisphere continents. The model–data comparisons and mismatches point to further study of the sensitivity of the simulations to uncertainties in the boundary conditions and of the uncertainties and sparse coverage in current proxy reconstructions. The CMIP6–Paleoclimate Modeling Intercomparison Project (PMIP4) lig127k simulations, in combination with the proxy record, improve our confidence in future projections of monsoons, surface temperature, and Arctic sea ice, thus providing a key target for model evaluation and optimization.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AMER METEOROLOGICAL SOC
    In:  EPIC3Journal of Climate, AMER METEOROLOGICAL SOC, 31(13), pp. 5243-5261, ISSN: 0894-8755
    Publication Date: 2018-06-27
    Description: Basal melting of Antarctic ice shelves is expected to increase during the twenty-first century as the ocean warms, which will have consequences for ice sheet stability and global sea level rise. Here we present future projections of Antarctic ice shelf melting using the Finite Element Sea Ice/Ice-Shelf Ocean Model (FESOM) forced with atmospheric output from models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). CMIP5 models are chosen based on their agreement with historical atmospheric reanalyses over the Southern Ocean; the best-performing models are ACCESS 1.0 and the CMIP5 multimodel mean. Their output is bias-corrected for the representative concentration pathway (RCP) 4.5 and 8.5 scenarios. During the twenty-first-century simulations, total ice shelf basal mass loss increases by between 41% and 129%. Every sector of Antarctica shows increased basal melting in every scenario, with the largest increases occurring in the Amundsen Sea. The main mechanism driving this melting is an increase in warm Circumpolar Deep Water on the Antarctic continental shelf. A reduction in wintertime sea ice formation simulated during the twenty-first century stratifies the water column, allowing a warm bottom layer to develop and intrude into ice shelf cavities. This effect may be overestimated in the Amundsen Sea because of a cold bias in the present-day simulation. Other consequences of weakened sea ice formation include freshening of High Salinity Shelf Water and warming of Antarctic Bottom Water. Furthermore, freshening around the Antarctic coast in our simulations causes the Antarctic Circumpolar Current to weaken and the Antarctic Coastal Current to strengthen.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-04-13
    Description: An increasing number of Southern Ocean models now include Antarctic ice-shelf cavities, and simulate thermodynamics at the ice-shelf/ocean interface. This adds another level of complexity to Southern Ocean simulations, as ice shelves interact directly with the ocean and indirectly with sea ice. Here, we present the first model intercomparison and evaluation of present-day ocean/sea-ice/ice-shelf interactions, as simulated by two models: a circumpolar Antarctic configuration of MetROMS (ROMS: Regional Ocean Modelling System coupled to CICE: Community Ice CodE) and the global model FESOM (Finite Element Sea-ice Ocean Model), where the latter is run at two different levels of horizontal resolution. From a circumpolar Antarctic perspective, we compare and evaluate simulated ice-shelf basal melting and sub-ice-shelf circulation, as well as sea-ice properties and Southern Ocean water mass characteristics as they influence the sub-ice-shelf processes. Despite their differing numerical methods, the two models produce broadly similar results and share similar biases in many cases. Both models reproduce many key features of observations but struggle to reproduce others, such as the high melt rates observed in the small warm-cavity ice shelves of the Amundsen and Bellingshausen seas. Several differences in model design show a particular influence on the simulations. For example, FESOM's greater topographic smoothing can alter the geometry of some ice-shelf cavities enough to affect their melt rates; this improves at higher resolution, since less smoothing is required. In the interior Southern Ocean, the vertical coordinate system affects the degree of water mass erosion due to spurious diapycnal mixing, with MetROMS' terrain-following coordinate leading to more erosion than FESOM's z coordinate. Finally, increased horizontal resolution in FESOM leads to higher basal melt rates for small ice shelves, through a combination of stronger circulation and small-scale intrusions of warm water from offshore.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-03-29
    Description: Thermohaline circulation, variability, energy and moisture balance model, paleoceanography. - Freshening of high latitude surface water can change the large scale oceanic transport of heat and salt. Consequently, atmospheric and sea ice perturbations over the deep water production sites excite a large scale response establishing an oceanic t̀̀eleconnection'' with time scales of years to centuries. To study these feed-backs, an atmospheric energy and moisture balance model (EMBM), predicting the heat and fresh water fluxes at the surface, and a thermodynamic sea ice model were constructed and coupled to the GFDL ocean model MOM2. The heat and moisture transports by transient eddies in the EMBM are parameterized by diffusion. The coupled model reproduces many aspects of today's oceanic circulation. The most interesting features of the coupled model are the sensitivity of the thermohaline circulation to changes in the configuration, the multidecadal variability in the ocean-sea ice system, and the behaviour of the thermohaline circulation during transitions between glacial and interglacial periods. A very strong thermohaline circulation develops in the coupled system that is not evident in the stand-alone ocean model. An interesting aspect of this behaviour is the existence of a maximum strength in the overturning. Beyond this maximum, evaporation in the subtropics cannot balance the northward salt-transport. As a result, the watermasses over the deep water production sites become fresher, leading to a collapse of the thermohaline circulation. The associated changes in the sea ice cover prevent the system to recover. ...
    Description: thesis
    Keywords: 551.6 ; 550 ; QDC 200 ; Synoptische Klimageographie ; Wärme- und Strahlungshaushalt der Atmosphäre {Meteorologie} ; Statistische Klimatologie und Klimatologische Modelle ; Klimaänderungen
    Language: German
    Type: monograph , publishedVersion
    Format: 132 S.
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-12
    Description: Numerical models are important tools for understanding the processes and feedbacks in the Earth system, including those involving changes in atmospheric CO2 (CO2,atm) concentrations. Here, we compile 55 published model studies (consisting of 778 individual simulations) that assess the impact of six forcing mechanisms on millennial-scale CO2,atm variations: changes in freshwater supply to the North Atlantic and Southern Ocean, the strength and position of the southern-hemisphere westerlies, Antarctic sea ice extent, and aeolian dust fluxes. We generally find agreement on the direction of simulated CO2,atm change across simulations, but the amplitude of change is inconsistent, primarily due to the different complexities of the model representation of Earth system processes. When freshwater is added to the North Atlantic, a reduced Atlantic Meridional Overturning Circulation (AMOC) is generally accompanied by an increase in Southern Ocean- and Pacific overturning, reduced Antarctic sea ice extent, spatially varying export production, and changes in carbon storage in the Atlantic (rising), in other ocean basins (generally decreasing) and on land (more varied). Positive or negative CO2,atm changes are simulated during AMOC minima due to a spatially and temporally varying dominance of individual terrestrial and oceanic drivers (and compensating effects between them) across the different models. In contrast, AMOC recoveries are often accompanied by rising CO2,atm levels, which are mostly driven by ocean carbon release (albeit from different regions). The magnitude of simulated CO2,atm rise broadly scales with the duration of the AMOC perturbation (i.e., the stadial length). When freshwater is added to the Southern Ocean, reduced deep-ocean ventilation drives a CO2,atm drop via reduced carbon release from the Southern Ocean. Although the impacts of shifted southern-hemisphere westerlies are inconsistent across model simulations, their intensification raises CO2,atm via enhanced Southern Ocean Ekman pumping. Increased supply of aeolian dust to the ocean, and thus iron fertilisation of marine productivity, consistently lowers modelled CO2,atm concentrations via more efficient nutrient utilisation. The magni- tude of CO2,atm change in response to dust flux variations, however, largely depends on the complexity of models' marine ecosystem and iron cycle. This especially applies to simulations forced by Antarctic sea ice changes, in which the direction of simulated CO2,atm change varies greatly across model hierarchies. Our compilation highlights that no single (forcing) mechanism can explain observed past millennial-scale CO2,atm variability, and identifies important future needs in coupled carbon cycle-climate modelling to better understand the mechanisms governing CO2,atm changes in the past.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2006. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences 104 (2007): 6556-6561, doi:10.1073/pnas.0611313104.
    Description: The Younger Dryas cold interval represents a time when much of the Northern Hemisphere cooled from ~12.9 to 11.5 kiloyears before present. The cause of this event, which has long been viewed as the canonical example of abrupt climate change, was initially attributed to the routing of freshwater to the St. Lawrence River with an attendant reduction in Atlantic meridional overturning circulation. However, this mechanism has recently been questioned because current proxies and dating techniques have been unable to confirm that eastward routing with an increase in freshwater flux occurred during the Younger Dryas. Here we use new geochemical proxies (ΔMg/Ca, U/Ca & 87Sr/86Sr) measured in planktonic foraminifera at the mouth of the St. Lawrence Estuary as tracers of freshwater sources to further evaluate this question. Our proxies, combined with planktonic δ18Oseawater and δ13C, confirm that routing of runoff from western Canada to the St. Lawrence River occurred at the start of the Younger Dryas, with an attendant increase in freshwater flux of 0.06 ± 0.02 Sverdrup (1 Sverdrup (Sv) = 106 m3 s-1). This base discharge increase is sufficient to have reduced Atlantic meridional overturning circulation and caused the Younger Dryas cold interval. In addition, our data indicate subsequent fluctuations in the freshwater flux to the St. Lawrence River of ~0.06 to 0.12 Sv, thus explaining the variability in the overturning circulation and climate during the Younger Dryas.
    Description: This research was funded by the NSF Paleoclimate Program (P.U.C.) and the NSF (G.P.K.).
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 14 . pp. 4767-4780.
    Publication Date: 2020-02-06
    Description: Treatment of the underwater light field in ocean biogeochemical models has been attracting increasing interest, with some models moving towards more complex parameterisations. We conduct a simple sensitivity study of a typical, highly simplified parameterisation. In our study, we vary the phytoplankton light attenuation parameter over a range constrained by data during both pre-industrial equilibrated and future climate scenario RCP8.5. In equilibrium, lower light attenuation parameters (weaker self-shading) shift net primary production (NPP) towards the high latitudes, while higher values of light attenuation (stronger shelf-shading) shift NPP towards the low latitudes. Climate forcing magnifies this relationship through changes in the distribution of nutrients both within and between ocean regions. Where and how NPP responds to climate forcing can determine the magnitude and sign of global NPP trends in this high CO2 future scenario. Ocean oxygen is particularly sensitive to parameter choice. Under higher CO2 concentrations, two simulations establish a strong biogeochemical feedback between the Southern Ocean and low-latitude Pacific that highlights the potential for regional teleconnection. Our simulations serve as a reminder that shifts in fundamental properties (e.g. light attenuation by phytoplankton) over deep time have the potential to alter global biogeochemistry.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-06
    Description: Observations indicate an expansion of oxygen minimum zones (OMZs) over the past 50 years, likely related to ongoing deoxygenation caused by reduced solubility, changes in stratification and circulation, and a potential acceleration of organic matter turnover in a warming climate. Higher temperatures also lead to enhanced weathering on land, which, in turn, increase the phosphorus and alkalinity flux into the ocean. The overall area of ocean sediments that are in direct contact with low oxygen bottom waters also increases with expanding OMZs. This leads to an additional release of phosphorus from ocean sediments and therefore raises the ocean's phosphorus inventory even further. Higher availability in phosphorus enhances biological production, remineralisation and oxygen consumption, and might therefore lead to further expansions of OMZs, representing a positive feedback. A negative feedback arises from the enhanced productivity-induced drawdown of carbon and also increased uptake of CO2 due to increased alkalinity, which, in turn, got there through weathering. This feedback leads to a decrease in atmospheric CO2 and weathering rates. Here we quantify these two competing feedbacks on millennial timescales for a high CO2 emission scenario. Using the UVic Earth System Climate Model of intermediate complexity, our model results suggest that the positive benthic phosphorus release feedback has only a minor impact on the size of OMZs in the next 1000 years, although previous studies assume that the phosphorus release feedback was the main factor for anoxic conditions during Cretaceous period. The increase in the marine phosphorus inventory under assumed business-as-usual global warming conditions originates, on millennial timescales, almost exclusively from the input via terrestrial weathering and causes a 4 to 5-fold expansion of the suboxic water volume in the model.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  (PhD/ Doctoral thesis), Universität Bremen, Bremen, Germany, 124 pp
    Publication Date: 2015-06-11
    Description: Thermohaline circulation, variability, energy and moisture balance model, paleoceanography. - Freshening of high latitude surface water can change the large scale oceanic transport of heat and salt. Consequently, atmospheric and sea ice perturbations over the deep water production sites excite a large scale response establishing an oceanic t̀̀eleconnection'' with time scales of years to centuries. To study these feed-backs, an atmospheric energy and moisture balance model (EMBM), predicting the heat and fresh water fluxes at the surface, and a thermodynamic sea ice model were constructed and coupled to the GFDL ocean model MOM2. The heat and moisture transports by transient eddies in the EMBM are parameterized by diffusion. The coupled model reproduces many aspects of today's oceanic circulation. The most interesting features of the coupled model are the sensitivity of the thermohaline circulation to changes in the configuration, the multidecadal variability in the ocean-sea ice system, and the behaviour of the thermohaline circulation during transitions between glacial and interglacial periods. A very strong thermohaline circulation develops in the coupled system that is not evident in the stand-alone ocean model. An interesting aspect of this behaviour is the existence of a maximum strength in the overturning. Beyond this maximum, evaporation in the subtropics cannot balance the northward salt-transport. As a result, the watermasses over the deep water production sites become fresher, leading to a collapse of the thermohaline circulation. The associated changes in the sea ice cover prevent the system to recover. ...
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...