GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Keywords
Language
  • 1
    Type of Medium: Book
    Pages: 130 S , graph. Darst.
    Language: Undetermined
    Note: Bremen, Univ., Diss., 2000
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Forschungsbericht ; Antarktis ; Meeresspiegelschwankung
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (30 Seiten, 2.361 KB) , Illustrationen
    Language: German
    Note: Förderkennzeichen BMBF 01LP1171 A-B. - Verbund-Nummer 01106347 , Literaturverzeichnis: Seiten 27-30 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-06
    Description: The Regional Antarctic ice and Global Ocean (RAnGO) model has been developed to study the interaction between the world ocean and the Antarctic ice sheet. The coupled model is based on a global implementation of the Finite Element Sea-ice Ocean Model (FESOM) with a mesh refinement in the Southern Ocean, particularly in its marginal seas and in the sub-ice-shelf cavities. The cryosphere is represented by a regional setup of the ice flow model RIMBAY comprising the Filchner–Ronne Ice Shelf and the grounded ice in its catchment area up to the ice divides. At the base of the RIMBAY ice shelf, melt rates from FESOM's ice-shelf component are supplied. RIMBAY returns ice thickness and the position of the grounding line. The ocean model uses a pre-computed mesh to allow for an easy adjustment of the model domain to a varying cavity geometry. RAnGO simulations with a 20th-century climate forcing yield realistic basal melt rates and a quasi-stable grounding line position close to the presently observed state. In a centennial-scale warm-water-inflow scenario, the model suggests a substantial thinning of the ice shelf and a local retreat of the grounding line. The potentially negative feedback from ice-shelf thinning through a rising in situ freezing temperature is more than outweighed by the increasing water column thickness in the deepest parts of the cavity. Compared to a control simulation with fixed ice-shelf geometry, the coupled model thus yields a slightly stronger increase in ice-shelf basal melt rates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 30 (12). pp. 4337-4350.
    Publication Date: 2020-02-06
    Description: Warm water of open ocean origin on the continental shelf of the Amundsen and Bellingshausen Seas causes the highest basal melt rates reported for Antarctic ice shelves with severe consequences for the ice shelf/ice sheet dynamics. Ice shelves fringing the broad continental shelf in the Weddell and Ross Seas melt at rates orders of magnitude smaller. However, simulations using coupled ice–ocean models forced with the atmospheric output of the HadCM3 SRES-A1B scenario run (CO2 concentration in the atmosphere reaches 700 ppmv by the year 2100 and stays at that level for an additional 100 years) show that the circulation in the southern Weddell Sea changes during the twenty-first century. Derivatives of Circumpolar Deep Water are directed southward underneath the Filchner–Ronne Ice Shelf, warming the cavity and dramatically increasing basal melting. To find out whether the open ocean will always continue to power the melting, the authors extend their simulations, applying twentieth-century atmospheric forcing, both alone and together with prescribed basal mass flux at the end of (or during) the SRES-A1B scenario run. The results identify a tipping point in the southern Weddell Sea: once warm water flushes the ice shelf cavity a positive meltwater feedback enhances the shelf circulation and the onshore transport of open ocean heat. The process is irreversible with a recurrence to twentieth-century atmospheric forcing and can only be halted through prescribing a return to twentieth-century basal melt rates. This finding might have strong implications for the stability of the Antarctic ice sheet.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-03-13
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-01-07
    Description: Sea-ice concentrations in the Laptev Sea simulated by the coupled North Atlantic—Arctic Ocean—Sea-Ice Model and Finite Element Sea-Ice Ocean Model are evaluated using sea-ice concentrations from Advanced Microwave Scanning Radiometer—Earth Observing System satellite data and a polynya classification method for winter 2007/08. While developed to simulate largescale sea-ice conditions, both models are analysed here in terms of polynya simulation. The main modification of both models in this study is the implementation of a landfast-ice mask. Simulated sea-ice fields from different model runs are compared with emphasis placed on the impact of this prescribed landfast-ice mask. We demonstrate that sea-ice models are not able to simulate flaw polynyas realistically when used without fast-ice description. Our investigations indicate that without landfast ice and with coarse horizontal resolution the models overestimate the fraction of open water in the polynya. This is not because a realistic polynya appears but due to a larger-scale reduction of ice concentrations and smoothed ice-concentration fields. After implementation of a landfast-ice mask, the polynya location is realistically simulated but the total open-water area is still overestimated in most cases. The study shows that the fast-ice parameterization is essential for model improvements. However, further improvements are necessary in order to progress from the simulation of large-scale features in the Arctic towards a more detailed simulation of smaller-scaled features (here polynyas) in an Arctic shelf sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Cambridge Univ. Press
    In:  Antarctic Science, 27 (4). pp. 388-402.
    Publication Date: 2015-07-21
    Description: The development of coastal polynyas, areas of enhanced heat flux and sea ice production strongly depend on atmospheric conditions. In Antarctica, measurements are scarce and models are essential for the investigation of polynyas. A robust quantification of polynya exchange processes in simulations relies on a realistic representation of atmospheric conditions in the forcing dataset. The sensitivity of simulated coastal polynyas in the south-western Weddell Sea to the atmospheric forcing is investigated with the Finite-Element Sea ice-Ocean Model (FESOM) using daily NCEP/NCAR reanalysis data (NCEP), 6 hourly Global Model Europe (GME) data and two different hourly datasets from the high-resolution Consortium for Small-Scale Modelling (COSMO) model. Results are compared for April to August in 2007–09. The two coarse-scale datasets often produce the extremes of the data range, while the finer-scale forcings yield results closer to the median. The GME experiment features the strongest winds and, therefore, the greatest polynya activity, especially over the eastern continental shelf. This results in higher volume and export of High Salinity Shelf Water than in the NCEP and COSMO runs. The largest discrepancies between simulations occur for 2008, probably due to differing representations of the ENSO pattern at high southern latitudes. The results suggest that the large-scale wind field is of primary importance for polynya development.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-12-17
    Description: Die Polynjen der Laptev-See nehmen eine Schlüsselrolle in den Schelfgebieten der sibirischen Arktis ein. Hier wird ein beachtlicher Teil des Meereisvolumens im arktischen Ozean gebildet. Zur Simulation der Dynamik der Polynjen und Quantifizierung der Eisproduktion verwenden wir das numerische Meereis-Ozean-Modell FESOM (Finite Element Sea Ice-Ocean-Model) (AWI Bremerhaven). In den bisherigen Simulationen wurde das FESOM mit täglichen NCEP (National Centers for Environmental Prediction) Daten angetrieben. Für den 1. April bis 9. Mai 2008 untersuchen wir den Einfluss von folgenden verschiedenen Antriebsdaten: Tägliche und 6-stündliche NCEP/DOE (Department of Energy) Reanalysen 2 (1.875 ̊ x 1.875 ̊), 6-stündliche NCEP/NCAR (National Centers for Atmospheric Research) Reanalysen 1 (2.5 ̊ x 2.5 ̊), 6-stündliche Analysen des GME (Globalmodell des Deutschen Wetterdienstes) (0.5 ̊ x 0.5 ̊) und hoch aufgelöste stündliche COSMO (Consortium for Small-Scale Modelling) Daten (5 km x 5 km). Vergleiche mit In-situ-Messungen des TRANSDRIFT XIII-2 Experiments 2008 zeigen, dass der Wind von allen atmosphärischen Antriebsdaten realistisch über dem Festeis wiedergegeben wird. Mit Ausnahme der FESOM-Simulationen mit täglichen NCEP-Daten werden die Öffnungs- und Schließvorgänge der Polynjen in guter Übereinstimmung mit AMSR-E (Advanced Microwave Scanning Radiometer - Earth Observing System) Produkten simuliert. Allerdings bestehen beträchtliche Diskrepanzen zwischen den Meereisproduktionsraten der unterschiedlichen Simulationen. Um die Eisproduktion in Polynjen zu quantifizieren sind stündliche, hoch aufgelöste atmosphärische Daten notwendig.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  [Poster] In: Joint Russian-German Workshop on Research in the Laptev Sea Region, 08.11.-11.11.2010, St. Petersburg, Russia .
    Publication Date: 2014-12-11
    Description: The Laptev Sea polynyas play a key role for the shelf areas of the Siberian Arctic due to their impact on ice production. Changes in polynya dynamics result in modified fluxes of energy, momentum and matter in the atmosphere-ocean-sea ice system. An improved understanding and quantification of polynya effects in the Laptev Sea can be achieved by high-resolution sea ice-ocean models. Here we use the well-established Finite Element Sea Ice-Ocean Model FESOM (5 km x 5 km) (AWI Bremerhaven). It consists of a hydrostatic primitive-equation ocean model and a dynamic-thermodynamic sea ice model. In our study the model is forced by 6-hourly GME analyses (0.5° x 0.5°), daily and 6-hourly NCEP/NCAR reanalyses (2.5° x 2.5°) and hourly COSMO data (5 km x 5 km) to investigate a polynya event during the TRANSDRIFT winter experiment 2008. The input data consists of 10 m-wind, 2 m-temperature and specific humidity, total cloudiness and precipitation rate. In order to test the quality of the forcing data, comparisons with in-situ have been performed. They show shortcomings of the atmospheric analyses model data with respect to the daily course of the temperature, but very good agreement for the wind. The opening process of a main polynya event on 29 April 2008 is represented with all atmospheric forcing fields (except the daily NCEP data) in a similarly good way. However, there are differences in direction and velocity of the icedrift and in the location and development of the polynyas. Small-scale structures are best represented by applying the high-resolution COSMO data. The maximum sensible heat flux is 220 W/m2, the maximum latent heat flux is 120 W/m2, the maximum advective ice thickness reduction is 5 cm/h and the maximum thermal ice thickness production is 5 mm/h.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  [Poster] In: Joint Russian-German Workshop on Research in the Laptev Sea Region, 08.11.-11.11.2010, St. Petersburg, Russia .
    Publication Date: 2014-12-09
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...