GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    Publication Date: 2023-06-21
    Description: To document distinct sources of particulate organic carbon (POC) to the Río Bermejo, we collected 15 soil and 13 leaf litter samples from the local floodplain, and 10 bedrock (predominantly outcroppings of fine-grained sedimentary bedrock) and 2 soil samples from the Río Bermejo headwaters. Leaf litter and soil were oven-dried at 40°C for 〉48 hours. We shredded leaf litter in an industrial blender, homogenized soil samples in an agate mortar and manually removed root and plant debris 〉1 cm, and pulverized bedrock samples to 〈63 µm.
    Keywords: AR15DS-001; AR15DS-005a; AR15DS-005b; AR15DS-008; AR15DS-010b; AR15DS-013; AR15DS-015; AR15DS-016; AR15DS-018; AR15DS-021; AR15DS-045-S; AR15DS-052-S; AR17MR-18; AR17MR-37; AR17MR-38; AR17MR-48; AR17MR-49; Argentina; biogeochemistry; Bucket, plastic; Calculated; Carbon, organic, total; Carbon, organic/Nitrogen, total ratio; DATE/TIME; DEPTH, sediment/rock; Distance; El Colgado; Element analyser (EA); Element analyser isotope ratio mass spectrometer (EA-IRMS); Element analyzer coupled to an accelerator mass spectrometer (EA-AMS); Event label; Fraction modern carbon; Latitude of event; Longitude of event; meandering river; Median, grain size; Nitrogen, total; Nitrogen, total/Carbon, organic ratio; organic carbon (OC); Particle size analyser (Retsch/Horiba LA-950V2); PLV_LL11032018; Puerto lavalle; Reserva Natural Formosa; river sediment; RNF_LL12_3_18; RSF-RB confluence; Sample comment; Sample ID; Sample type; ST15-52; ST15-71; StRATEGy; StRATEGy international research training group; SZ_LL12_3_18; Villa Rio Bermejito; WB; δ13C, organic carbon
    Type: Dataset
    Format: text/tab-separated-values, 222 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-06-21
    Description: These data were collected from the Río Bermejo in northern Argentina. To determine the seasonal variability in the particulate organic carbon composition of exported river sediment, we collected weekly suspended sediment samples (March 2016 to March 2018) at the Puente Lavalle (PLV) monitoring site, ~870 river km downstream of the mountain front (-25.655°S, -60.130°W). Surface water samples were collected from a bridge using a river-rinsed bucket and were filtered through a 0.22 µm polyethersulfone membrane. Samples were stored on site at ambient temperatures for up to one year, transferred to Germany and subsequently stored at ~4°C until processing. Suspended sediment was rinsed from filters into pre-combusted glass evaporating dishes using ultra-pure (18.2 M) water, oven-dried at 40°C for 〉48 hr, and homogenized in an agate mortar without crushing. Geochemical and grain size analyses required 0.8 g sediment; for samples 〈0.8 g, we combined consecutive weekly samples to create a new bulk sample of 〉0.8 g (Table S1). We split sediment samples into aliquots for grain size analysis via laser diffraction and geochemical analyses. Sediment particle size distributions were measured on ~0.2 g aliquots using a laser diffraction particle size analyzer (Retsch/Horiba LA-950V2). Aliquots for geochemical analyses were ground to 〈63 µm. The homogenized suspended sediment, bedrock, soil and leaf litter aliquots were further split for total nitrogen measurement (TN, wt%) and organic carbon analyses including total organic carbon (TOC, wt%), stable carbon isotope composition (δ13COC), and radiocarbon fraction modern (Fm). We decarbonated the aliquots for POC measurements using a liquid HCl leach following Galy et al., (2007). TOC and TN measurements were split between facilities at the German Research Centre for Geosciences (GFZ), Durham University, and University of Nevada Reno (UNR) using an elemental analyzer (EA). δ13COC was measured with a coupled EA-isotope ratio mass spectrometer (EA-IRMS). All isotopic compositions are reported using standard delta (δ) notation in per mil (‰) relative to Vienna PeeDee Belemnite (VPDB). Calibration and accuracy were monitored through analyses of in-house standards (Glutamic Acid, 40.82% C, 9.52% N at Durham; Boden3, HEKATECH at GFZ), which were calibrated against international standards (e.g., USGS 40, USGS 24, IAEA 600, IAEA CH3, IAEA CH7, IAEA N1, IAEA N2). Radiocarbon content was measured for a subset of 29 samples at ETH Zürich using a combined EA and accelerator mass spectrometer (EA-AMS) (Ruff et al. 2010; McIntyre et al., 2017). All 14C /12C ratios are reported as fraction modern (Fm, equivalent to F14C as defined by Reimer et al. (2004)) relative to 95% of the 14C activity of NBS Oxalic Acid II in 1950 (δ13COC = -17.8‰) and normalized to δ13COC = -25‰ of VPDB.\n\nThis geochemical dataset is supported by hydrologic measurements of daily water discharge at the El Colorado gauging station (river km 1086, SNIH, https://snih.hidricosargentina.gob.ar/) collected between 2016 and 2018.
    Keywords: biogeochemistry; Bucket, plastic; Calculated; Carbon, organic, total; Carbon, organic/Nitrogen, total ratio; DATE/TIME; Element analyser (EA); Element analyser isotope ratio mass spectrometer (EA-IRMS); Element analyzer coupled to an accelerator mass spectrometer (EA-AMS); Event label; Fraction modern carbon; Latitude of event; Longitude of event; meandering river; Median, grain size; Nitrogen, total; Nitrogen, total/Carbon, organic ratio; organic carbon (OC); Particle size analyser (Retsch/Horiba LA-950V2); PLV_01042016; PLV_01062016; PLV_01062017; PLV_01122017; PLV_02012018; PLV_02092016; PLV_02122016; PLV_04052017; PLV_06012017; PLV_06052016; PLV_06072016; PLV_06082016; PLV_07022018; PLV_07042017; PLV_07102016; PLV_08042016; PLV_08052017; PLV_08122016; PLV_09062017; PLV_09082017; PLV_09112017; PLV_10062016; PLV_11122017; PLV_12012018; PLV_12042016; PLV_12062017; PLV_12072016; PLV_12072017; PLV_12082016; PLV_13012017; PLV_14042017; PLV_14052016; PLV_16022018; PLV_16092016; PLV_16122016; PLV_17062016; PLV_18012017; PLV_18032016; PLV_19012018; PLV_19052017; PLV_19082016; PLV_20052016; PLV_20122017; PLV_21022018; PLV_21042017; PLV_22042016; PLV_22072016; PLV_23122016; PLV_24012018; PLV_24032016; PLV_24032017; PLV_24062016; PLV_24102016; PLV_24112016; PLV_26072017; PLV_26082016; PLV_27012017; PLV_27052016; PLV_27062016; PLV_28042017; PLV_28062017; PLV_28122017; PLV_29042016; PLV_29072016; PLV_29092017; PLV_30032017; PLV_30122016; PLV_31012018; PLV_31082017; Puerto lavalle; River discharge, daily; river sediment; Sample comment; Sample ID; Sampling date; Season; StRATEGy; StRATEGy international research training group; WB; δ13C, organic carbon
    Type: Dataset
    Format: text/tab-separated-values, 696 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-06-21
    Description: These data were collected from the Río Bermejo in northern Argentina. To determine the seasonal variability in the particulate organic carbon composition of exported river sediment, we collected weekly suspended sediment samples (March 2016 to March 2018) at the Puente Lavalle (PLV) monitoring site, ~870 river km downstream of the mountain front (-25.655°S, -60.130°W). Surface water samples were collected from a bridge using a river-rinsed bucket and were filtered through a 0.22 µm polyethersulfone membrane. Samples were stored on site at ambient temperatures for up to one year, transferred to Germany and subsequently stored at ~4°C until processing. To document distinct sources of particulate organic carbon (POC) to the Río Bermejo, we collected 15 soil and 13 leaf litter samples from the local floodplain, and 10 bedrock (predominantly outcroppings of fine-grained sedimentary bedrock) and 2 soil samples from the Río Bermejo headwaters. Suspended sediment was rinsed from filters into pre-combusted glass evaporating dishes using ultra-pure (18.2 M) water, oven-dried at 40°C for 〉48 hr, and homogenized in an agate mortar without crushing. Leaf litter and soil were oven-dried at 40°C for 〉48 hours. We shredded leaf litter in an industrial blender, homogenized soil samples in an agate mortar and manually removed root and plant debris 〉1 cm, and pulverized bedrock samples to 〈63 µm. Geochemical and grain size analyses required 0.8 g sediment; for samples 〈0.8 g, we combined consecutive weekly samples to create a new bulk sample of 〉0.8 g (Table S1). We split sediment samples into aliquots for grain size analysis via laser diffraction and geochemical analyses. Sediment particle size distributions were measured on ~0.2 g aliquots using a laser diffraction particle size analyzer (Retsch/Horiba LA-950V2). Aliquots for geochemical analyses were ground to 〈63 µm. The homogenized suspended sediment, bedrock, soil and leaf litter aliquots were further split for total nitrogen measurement (TN, wt%) and organic carbon analyses including total organic carbon (TOC, wt%), stable carbon isotope composition (δ13COC), and radiocarbon fraction modern (Fm). We decarbonated the aliquots for POC measurements using a liquid HCl leach following Galy et al. (2007, doi:10.1111/j.1751-908X.2007.00864.x)). TOC and TN measurements were split between facilities at the German Research Centre for Geosciences (GFZ), Durham University, and University of Nevada Reno (UNR) using an elemental analyzer (EA). δ13COC was measured with a coupled EA-isotope ratio mass spectrometer (EA-IRMS). All isotopic compositions are reported using standard delta (δ) notation in per mil (‰) relative to Vienna PeeDee Belemnite (VPDB). Calibration and accuracy were monitored through analyses of in-house standards (Glutamic Acid, 40.82% C, 9.52% N at Durham; Boden3, HEKATECH at GFZ), which were calibrated against international standards (e.g., USGS 40, USGS 24, IAEA 600, IAEA CH3, IAEA CH7, IAEA N1, IAEA N2). Radiocarbon content was measured for a subset of 29 samples at ETH Zürich using a combined EA and accelerator mass spectrometer (EA-AMS) (Ruff et al. (2010, doi:10.1017/S003382220005637X); McIntyre et al. (2017, doi:10.1017/RDC.2016.68)). All 14C /12C ratios are reported as fraction modern (Fm, equivalent to F14C as defined by Reimer et al. (2004)) relative to 95% of the 14C activity of NBS Oxalic Acid II in 1950 (δ13COC = -17.8‰) and normalized to δ13COC = -25‰ of VPDB. This geochemical dataset is supported by hydrologic measurements of daily water discharge at the El Colorado gauging station (river km 1086, SNIH, https://snih.hidricosargentina.gob.ar/) collected between 2016 and 2018.
    Keywords: biogeochemistry; meandering river; organic carbon (OC); river sediment; StRATEGy; StRATEGy international research training group
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-06-21
    Description: To study the transformation of organic carbon through long distance transport in rivers, we measured the composition of bulk organic carbon in river suspended sediment of the Rio Bermejo (northern Argentina). This river has a ~1300 km lowland flowpath with no significant tributaries. We collected fluvial suspended sediment in vertical depth profiles at five sampling locations along the length of the Rio Bermejo (northern Argentina) during near-bankfull conditions, when discharge varied between 675 and 1080 m3/s and banks were actively eroding. Additionally, we collected one depth profile from the Rio San Francisco (RSF) and one from the Rio Bermejo 10 km upstream of the RSF confluence. Combining these profiles and weighting them by the relative proportions of their total sediment load input to the mainstem Bermejo serves as a depth profile representing the headwaters. At each depth profile location, we collected water and suspended sediment from the channel thalweg by boat. We used a weighted 8-liter horizontal sampling bottle (Wildco Beta Plus bottle) with an attached pressure transducer to measure sampling depth. We separated sediment from the water using a custom-built 5-liter pressurized filtration unit with a 293 mm diameter, 0.2 µm polyethersulfone filter. In the laboratory, we rinsed sediment off the filters directly into an evaporating dish with ultrapure 18.2 MΩ water (pH~7). Samples were dried in an oven at 40ºC, and subsequently homogenized. Sediment particle size distributions were measured on ~10 mg aliquots using a laser diffraction particle size analyzer (Horiba LA-950). Specific surface area (SSA) of bulk sediment samples was measured on ~4 g aliquots using a Quantachrome NOVAtouch LX gas sorption analyzer and the Brunauer, Emmett, and Teller (BET) theory (Brunauer et al., 1938). Aliquots for organic carbon measurements were first treated with 4% HCl solution to remove inorganic carbon, following Galy et al. (2007, doi:10.1111/j.1751-908X.2007.00864.x). Total organic carbon (TOCPOC) and δ13C of POC was measured in duplicate at Durham University using a Costech elemental analyzer (EA) coupled to a CONFLO III and Thermo Scientific Delta V Advantage isotope ratio mass spectrometer (IRMS). Radiocarbon content was measured using an EA coupled to an accelerator mass spectrometer (EA-AMS) at ETH Zurich. We report 14C content as fraction modern (F14C), by normalizing measurements to 95% of the 1950 NBS Oxalic Acid II standard (δ13C = -17.8‰) and correcting for mass-dependent fractionation using a common δ13C value of -25‰. OC loading is the mass of organic carbon in a sample normalized by the sample's specific surface area (SSA). Reactive metals in the amorphous oxyhydroxide and crystalline oxide grain coatings, were extracted from the sediment samples using a procedure adapted from Wittmann et al. (2012, doi:10.1016/j.chemgeo.2012.04.031). The extracted oxyhydroxides and oxides were dried down and diluted in 3M HNO3. A 100 μl aliquot was taken for measurement of metal concentrations. Al, Fe, Mg, and Mn concentrations were measured using inductively coupled plasma optical emission spectroscopy (ICP-OES). Uncertainty of ICP-OES measurements was 〈5%. All depth-integrated values are calculated as a function of the suspended sediment concentration relative to the depth-averaged suspended sediment concentration.
    Keywords: Aluminium, reactive; AR17MR-05; AR17MR-06; AR17MR-07; AR17MR-08; AR17MR-11; AR17MR-12; AR17MR-13; AR17MR-14; AR17MR-24; AR17MR-25; AR17MR-26; AR17MR-27; AR17MR-30; AR17MR-31; AR17MR-32; AR17MR-33; AR17MR-34; AR17MR-35; AR17MR-36; AR17MR-42; AR17MR-43; AR17MR-44; AR17MR-45; AR17MR-46; Carbon, organic, loading; Carbon, organic, loading, standard error; Carbon, organic, total; Carbon, organic, total, standard error; CONFLUENCE; DATE/TIME; Depth, relative; Depth comment; Distance; El Colgado; Element analyser CHN (Costech) coupled to a CONFLO III and Thermo Scientific Delta V Advantage isotope ratio mass spectrometer (IRMS); Element analyzer coupled to an accelerator mass spectrometer (EA-AMS); ELEVATION; Embarcacion; Event label; Fraction modern carbon; Fraction modern carbon, standard error; Gas sorption analyszer (Quantachrome NOVAtouch LX) and BET-method (Brunauer et al., 1938); General Mansilla; Grain Size; ICP-OES, Inductively coupled plasma - optical emission spectrometry; Iron, reactive; LATITUDE; LONGITUDE; Magnesium, reactive; Manganese, reactive; Median, grain size; Normalized; oxyhydroxide; Particulate organic carbon; Puerto lavalle; radiocarbon; Reactive minerals, total; Reserva Natural Formosa; Rio San Francisco; river sediment; Sample ID; Scattering Particle Size Distribution Analyzer LA-950 (Horiba); Sediment transit time; Sediment transit time, uncertainty; Size fraction 〈 0.030 mm; Specific surface area; surface area; Suspended sediment concentration; TOC; Weighted average; δ13C; δ13C, standard error
    Type: Dataset
    Format: text/tab-separated-values, 528 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 84 (2012): 410-432, doi:10.1016/j.gca.2012.02.001.
    Description: We present an extensive river sediment dataset covering the Ganga basin from the Himalayan front downstream to the Ganga mainstream in Bangladesh. These sediments were mainly collected over several monsoon seasons and include depth profiles of suspended particles in the river water column. Mineral sorting is the first order control on the chemical composition of river sediments. Taking into account this variability we show that sediments become significantly depleted in mobile elements during their transit through the floodplain. By comparing sediments sampled at the Himalayan front with sediments from the Ganga mainstream in Bangladesh it is possible to budget weathering in the floodplain. Assuming a steady state weathering regime in the floodplain, the weathering of Himalayan sediments in the Gangetic floodplain releases ca. (189 ± 92)109 and (69 ± 22)109 moles/yr of carbonate bound Ca and Mg to the dissolved load, respectively. Silicate weathering releases (53 ± 18)109 and (42 ± 13)109 moles/yr of Na and K while the release of silicate Mg and Ca is substantially lower, between ca. 0 and 20109 moles/yr. Additionally, we show that sediment hydration, [H2O+], is a sensitive tracer of silicate weathering that can be used in continental detrital environments, such as the Ganga basin. Both [H2O+] content and the D/H isotopic composition of sediments increases during floodplain transfer in response to mineral hydrolysis and neoformations associated to weathering reactions. By comparing the chemical composition of river sediments across the floodplain with the composition of the eroded Himalayan source rocks, we suggest that the floodplain is the dominant location of silicate weathering for Na, K and [H2O+]. Overall this work emphasizes the role of the Gangetic floodplain in weathering Himalayan sediments. It also demonstrates how detrital sediments can be used as weathering tracers if mineralogical and chemical sorting effects are properly taken into account.
    Description: This work was supported by INSU program “Relief de la Terre” and ANR Calimero. Valier Galy was supported by the U.S. National Science Fundation (Grant OCE-0851015).
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): F04012, doi:10.1029/2010JF001947.
    Description: The Ganga River is one of the main conveyors of sediments produced by Himalayan erosion. Determining the flux of elements transported through the system is essential to understand the dynamics of the basin. This is hampered by the chemical heterogeneity of sediments observed both in the water column and under variable hydrodynamic conditions. Using Acoustic Doppler Current Profiler (ADCP) acquisitions with sediment depth profile sampling of the Ganga in Bangladesh we build a simple model to derive the annual flux and grain size distributions of the sediments. The model shows that ca. 390 (±30) Mt of sediments are transported on average each year through the Ganga at Haring Bridge (Bangladesh). Modeled average sediment grain size parameters D50 and D84 are 27 (±4) and 123 (±9) μm, respectively. Grain size parameters are used to infer average chemical compositions of the sediments owing to a strong grain size chemical composition relation. The integrated sediment flux is characterized by low Al/Si and Fe/Si ratios that are close to those inferred for the Himalayan crust. This implies that only limited sequestration occurs in the Gangetic floodplain. The stored sediment flux is estimated to c.a. 10% of the initial Himalayan sediment flux by geochemical mass balance. The associated, globally averaged sedimentation rates in the floodplain are found to be ca. 0.08 mm/yr and yield average Himalayan erosion rate of ca. 0.9 mm/yr. This study stresses the need to carefully address the average composition of river sediments before solving large-scale geochemical budgets.
    Description: This work was supported by INSU program “Relief de la Terre” and ANR Calimero. Valier Galy was supported by the U.S. National Science Foundation (grant OCE‐0851015).
    Keywords: Ganga ; Himalaya ; Chemical composition ; Floodplain ; River sediments
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/vnd.ms-excel
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 15 (2018): 3357-3375, doi:10.5194/bg-15-3357-2018.
    Description: The modern-day Godavari River transports large amounts of sediment (170 Tg per year) and terrestrial organic carbon (OCterr; 1.5 Tg per year) from peninsular India to the Bay of Bengal. The flux and nature of OCterr is considered to have varied in response to past climate and human forcing. In order to delineate the provenance and nature of organic matter (OM) exported by the fluvial system and establish links to sedimentary records accumulating on its adjacent continental margin, the stable and radiogenic isotopic composition of bulk OC, abundance and distribution of long-chain fatty acids (LCFAs), sedimentological properties (e.g. grain size, mineral surface area, etc.) of fluvial (riverbed and riverbank) sediments and soils from the Godavari basin were analysed and these characteristics were compared to those of a sediment core retrieved from the continental slope depocenter. Results show that river sediments from the upper catchment exhibit higher total organic carbon (TOC) contents than those from the lower part of the basin. The general relationship between TOC and sedimentological parameters (i.e. mineral surface area and grain size) of the sediments suggests that sediment mineralogy, largely driven by provenance, plays an important role in the stabilization of OM during transport along the river axis, and in the preservation of OM exported by the Godavari to the Bay of Bengal. The stable carbon isotopic (δ13C) characteristics of river sediments and soils indicate that the upper mainstream and its tributaries drain catchments exhibiting more 13C enriched carbon than the lower stream, resulting from the regional vegetation gradient and/or net balance between the upper (C4-dominated plants) and lower (C3-dominated plants) catchments. The radiocarbon contents of organic carbon (Δ14COC) in deep soils and eroding riverbanks suggests these are likely sources of "old" or pre-aged carbon to the Godavari River that increasingly dominates the late Holocene portion of the offshore sedimentary record. While changes in water flow and sediment transport resulting from recent dam construction have drastically impacted the flux, loci, and composition of OC exported from the modern Godavari basin, complicating reconciliation of modern-day river basin geochemistry with that recorded in continental margin sediments, such investigations provide important insights into climatic and anthropogenic controls on OC cycling and burial.
    Description: This project was supported by the Swiss National Science Foundations (“CAPS LOCK” grant no. 200021-140850 and “CAPS-LOCK2” grant no. 200021-163162). Francien Peterse received funding from NWO-Veni grant (grant no. 863.13.016). Liviu Giosan thanks grants from the National Science Foundation (OCE-0841736) and Woods Hole Oceanographic Institution.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Freymond, C. V., Lupker, M., Peterse, F., Haghipour, N., Wacker, L., Filip, F., et al. (2018). Constraining instantaneous fluxes and integrated compositions of fluvially discharged organic matter. Geochemistry, Geophysics, Geosystems, 19, 2453 2462. doi: 10.1029/2018GC007539.
    Description: Fluvial export of organic carbon (OC) and burial in ocean sediments comprises an important carbon sink, but fluxes remain poorly constrained, particularly for specific organic components. Here OC and lipid biomarker contents and isotopic characteristics of suspended matter determined in depth profiles across an active channel close to the terminus of the Danube River are used to constrain instantaneous OC and biomarker fluxes and integrated compositions during high to moderate discharges. During high (moderate) discharge, the total Danube exports 8 (7) kg/s OC, 7 (3) g/s higher plant‐derived long‐chain fatty acids (LCFA), 34 (21) g/s short‐chain fatty acids (SCFA), and 0.5 (0.2) g/s soil bacterial membrane lipids (brGDGTs). Integrated stable carbon isotopic compositions were TOC: −28.0 (−27.6)‰, LCFA: −33.5 (−32.8)‰ and Δ14C TOC: −129 (−38)‰, LCFA: −134 (−143)‰, respectively. Such estimates will aid in establishing quantitative links between production, export, and burial of OC from the terrestrial biosphere.
    Description: This project was funded by the Swiss National Science Foundation SNF. Grant Number: 200021_140850. F.P. acknowledges funding from NWO‐VENI grant 863.13.016. We thank the sampling crews from both field campaigns (Björn Buggle, James Saenz, Alissa Zuijdgeest, Marilu Tavagna, Stefan Eugen Filip, Silvia Lavinia Filip, Mihai, Clayton Magill, Thomas Blattmann, and Michael Albani), Daniel Montluçon for lab support and Hannah Gies for PCGC work. Figures, tables, and equations can be found in supporting information.
    Keywords: Danube River ; organic carbon ; biomarker ; radiocarbon ; ADCP
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Eglinton, T. I., Galy, V. V., Hemingway, J. D., Feng, X., Bao, H., Blattmann, T. M., Dickens, A. F., Gies, H., Giosan, L., Haghipour, N., Hou, P., Lupker, M., McIntyre, C. P., Montluçon, D. B., Peucker-Ehrenbrink, B., Ponton, C., Schefuß, E., Schwab, M. S., Voss, B. M., Wacker, L., Wu, Y., & Zhao, M. Climate control on terrestrial biospheric carbon turnover. Proceedings of the National Academy of Sciences of the United States of America, 118(8), (2021): e2011585118, htps://doi.org/ 10.1073/pnas.2011585118.
    Description: Terrestrial vegetation and soils hold three times more carbon than the atmosphere. Much debate concerns how anthropogenic activity will perturb these surface reservoirs, potentially exacerbating ongoing changes to the climate system. Uncertainties specifically persist in extrapolating point-source observations to ecosystem-scale budgets and fluxes, which require consideration of vertical and lateral processes on multiple temporal and spatial scales. To explore controls on organic carbon (OC) turnover at the river basin scale, we present radiocarbon (14C) ages on two groups of molecular tracers of plant-derived carbon—leaf-wax lipids and lignin phenols—from a globally distributed suite of rivers. We find significant negative relationships between the 14C age of these biomarkers and mean annual temperature and precipitation. Moreover, riverine biospheric-carbon ages scale proportionally with basin-wide soil carbon turnover times and soil 14C ages, implicating OC cycling within soils as a primary control on exported biomarker ages and revealing a broad distribution of soil OC reactivities. The ubiquitous occurrence of a long-lived soil OC pool suggests soil OC is globally vulnerable to perturbations by future temperature and precipitation increase. Scaling of riverine biospheric-carbon ages with soil OC turnover shows the former can constrain the sensitivity of carbon dynamics to environmental controls on broad spatial scales. Extracting this information from fluvially dominated sedimentary sequences may inform past variations in soil OC turnover in response to anthropogenic and/or climate perturbations. In turn, monitoring riverine OC composition may help detect future climate-change–induced perturbations of soil OC turnover and stocks.
    Description: This work was supported by grants from the US NSF (OCE-0928582 to T.I.E. and V.V.G.; OCE-0851015 to B.P.-E., T.I.E., and V.V.G.; and EAR-1226818 to B.P.-E.), Swiss National Science Foundation (200021_140850, 200020_163162, and 200020_184865 to T.I.E.), and National Natural Science Foundation of China (41520104009 to M.Z.).
    Keywords: Radiocarbon ; Plant biomarkers ; Carbon turnover times ; Fluvial carbon ; Carbon cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...