GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
Years
  • 1
    Publication Date: 2022-10-04
    Description: Climate change affects the stability and erosion of high‐alpine rock walls above glaciers (headwalls) that deliver debris to glacier surfaces. Since supraglacial debris in the ablation zone alters the melt behaviour of the underlying ice, the responses of debris‐covered glaciers and of headwalls to climate change may be coupled. In this study, we analyse the beryllium‐10 (10Be)‐cosmogenic nuclide concentration history of glacial headwalls delivering debris to the Glacier d'Otemma in Switzerland. By systematic downglacier‐profile‐sampling of two parallel medial moraines, we assess changes in headwall erosion through time for small, well‐defined debris source areas. We compute apparent headwall erosion rates from 10Be concentrations ([10Be]), measured in 15 amalgamated medial moraine debris samples. To estimate both the additional 10Be production during glacial debris transport and the age of our samples we combine our field‐based data with a simple model that simulates downglacier debris trajectories. Furthermore, we evaluate additional grain size fractions for eight samples to test for stochastic mass wasting effects on [10Be]. Our results indicate that [10Be] along the medial moraines vary systematically with time and consistently for different grain sizes. [10Be] are higher for older debris, closer to the glacier terminus, and lower for younger debris, closer to the glacier head. Computed apparent headwall erosion rates vary between ~0.6 and 10.8 mm yr−1, increasing over a maximum time span of ~200 years towards the present. As ice cover retreats, newly exposed headwall surfaces may become susceptible to enhanced weathering and erosion, expand to lower elevations, and contribute formerly shielded bedrock of likely different [10Be]. Hence, we suggest that recently lower [10Be] reflect the deglaciation of the debris source areas since the end of the Little Ice Age.
    Description: In glacial landscapes, systematic downglacier‐sampling of medial moraine debris holds the potential to assess changes in headwall erosion through time. Cosmogenic beryllium‐10 (10Be) concentrations within the medial moraines of Glacier d'Otemma, Switzerland, broadly increase downglacier and translate into increasing headwall erosion rates towards the present. These trends may reflect processes associated with the exposure of new bedrock surfaces across recently deglaciating source headwalls.
    Description: European Research Council (ERC) H2020‐EU.1.1.
    Description: https://doi.org/10.5880/GFZ.3.3.2021.007
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-30
    Description: As reverse weathering has been shown to impact long-term changes in atmospheric CO2 levels, it is crucial to develop quantitative tools to reconstruct marine authigenic clay formation. We explored the potential of the beryllium (Be) isotope ratio (10Be/9Be) recorded in marine clay-sized sediment to track neoformation of authigenic clays. The power of such proxy relies on the orders-of-magnitude difference in 10Be/9Be ratios between continental Be and Be dissolved in seawater. On riverine and marine sediments collected along a Chilean margin transect we chemically extracted reactive phases and separated the clay-sized sediment fraction. We compare the riverine and marine 10Be/9Be ratio of this fraction. Moreover, we compare the elemental and mineralogical composition and the Nd and Sr-isotopic composition of these samples. 10Be/9Be ratios increase four-fold from riverine to marine sediment. We attribute this increase to the incorporation of Be high in 10Be/9Be from dissolved biogenic opal, which also serves as a Si-source for the precipitation of marine authigenic clays. 10Be/9Be ratios thus sensitively track reverse-weathering reactions forming marine authigenic clays.
    Keywords: 10Be; authigenic clay; beryllium; Cosmogenic nuclide; denudation; reverse weathering
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-06-21
    Description: To determine the depositional age and the long-term delivery of meteoric 10Be (10Bem) to the Rio Bermejo floodplain (northern Argentina), we collected floodplain sediment samples at four locations identified as point bars of abandoned Rio Bermejo channels. We used a stainless-steel hand auger to collect sediment down to a maximum depth of ~5 m, or until refusal. For 10Bem and 9Bereac analysis, we extracted samples that integrated material from 0-20 cm below the surface, 20-50 cm, and regularly spaced 40 cm intervals for lower depths. We homogenized the material prior to packing into clean plastic bags. Sediment particle size distributions were measured on ~10 mg aliquots using a laser diffraction particle size analyzer (Horiba LA-950). The total reactive phase, including amorphous oxyhydroxides and crystalline oxide grain coatings, was extracted from the sediment samples using a procedure adapted from Wittmann et al. (2012, doi:10.1016/j.chemgeo.2012.04.031). 10Be was purified from the extracted material, spiked with a 9Be carrier solution containing 150 µg of 9Be, and packed into targets for AMS measurement at the University of Cologne Centre for Accelerator Mass Spectrometry (Cologne, Germany). 10Be/9Be measurements were normalized to the KN01-6-2 and KN01-5-3 standards (Dewald et al., 2013, doi:10.1016/j.nimb.2012.04.030) that are consistent with a 10Be half-life of 1.36 ± 0.07 x10 yrˉ¹ (Nishiizumi et al., 2007, doi:10.1016/j.nimb.2007.01.297). 10Bem was calculated from the normalized and blank-corrected 10Be/9Be ratios. The reported 1σ uncertainties include counting statistics and the uncertainties of both standard normalization and blank correction. Stable 9Be concentrations were measured on a separate aliquot of the sample solution using inductively coupled plasma optical emission spectroscopy (ICP-OES). Uncertainty of ICP-OES measurements was 5%. We used coarse quartz grain OSL analysis to determine depositional ages for each floodplain core. For OSL analysis, we collected light-sealed samples by driving an opaque tube into our floodplain cores at two select depths in each core. OSL measurements were performed using a Risø DA 15 OSL/TL reader equipped with a 90Sr beta irradiator (4.9 Gy/min). OSL signals were stimulated with blue LEDs (470 nm, 50 s, 125 ºC) and detected through an optical filter (U 340 Hoya). For each sample, 40 aliquots were measured using the single-aliquot regenerative dose (SAR) protocol (Murray and Wintle, 2000, doi:10.1016/S1350-4487(03)00053-2) for equivalent dose determination.
    Keywords: Accelerator mass spectrometry (AMS); Age, error; Age, maximum/old; Age, minimum/young; Age, optical stimulated luminescence (OSL); Age, soil; ALTITUDE; Beryllium-10; Beryllium-10, standard deviation; Beryllium-10/Beryllium-9; Beryllium-10/Beryllium-9, standard deviation; Beryllium-9; Beryllium-9, standard deviation; Clay minerals; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Dose recovery test; Event label; Gas sorption analyszer (Quantachrome NOVAtouch LX) and BET-method (Brunauer et al., 1938); Grain Size; HADR; Hand auger (drill); LATITUDE; LONGITUDE; Mass; Median, grain size; meteoric 10Be; Number of subsamples; OSL; Paleodose; Paleodose, standard deviation; Profile; river sediment; Sample ID; Skewness; SP_1; SP_2; SP_3; SP_4; Specific surface area
    Type: Dataset
    Format: text/tab-separated-values, 482 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-06-21
    Description: To test the potential of meteoric 10Be (10Bem) as a river sediment transit time proxy, we measured 10Bem concentrations in river suspended sediment of the Rio Bermejo (northern Argentina), which is a river with a ~1300 km lowland flowpath void of tributaries. We collected fluvial suspended sediment in vertical depth profiles at five sampling locations along the length of the Rio Bermejo (northern Argentina) during near-bankfull conditions, when discharge varied between 675 and 1080 m**3/s and banks were actively eroding. Additionally, we collected one depth profile from Rio San Francisco (RSF) and one from the Rio Bermejo 10 km upstream of the RSF confluence. Combining these profiles and weighting them by the relative proportions of their total sediment load input to the mainstem Bermejo serves as an integrated headwater depth profile. In the thalweg, we collected water and suspended sediment from a boat using a weighted 8-liter horizontal sampling bottle (Wildco Beta Plus bottle) with an attached pressure transducer to measure sampling depth. We separated sediment from the water using a custom-built 5-liter pressurized filtration unit with a 293 mm diameter, 0.2 µm polyethersulfone filter. In the laboratory, we rinsed sediment off the filters directly into an evaporating dish with ultrapure 18.2 MΩ water (pH~7; when needed, we added NH3 solution to the water to maintain pH~7). Samples were dried in an oven at 40ºC, and subsequently homogenized. Sediment particle size distributions were measured on ~10 mg aliquots using a laser diffraction particle size analyzer (Horiba LA-950). Specific surface area (SSA) of bulk sediment samples was measured on ~4 g aliquots using a Quantachrome NOVAtouch LX gas sorption analyzer and the Brunauer, Emmett, and Teller (BET) theory (Brunauer et al., 1938). The total reactive phase, including amorphous oxyhydroxides and crystalline oxide grain coatings, was extracted from the sediment samples using a procedure adapted from Wittmann et al. (2012, doi:10.1016/j.chemgeo.2012.04.031). 10Bem was purified from the extracted material, spiked with a 9Be carrier solution containing 150 µg of 9Be, and packed into targets for AMS measurement at the University of Cologne Centre for Accelerator Mass Spectrometry (Cologne, Germany). 10Be /9Be measurements were normalized to the KN01-6-2 and KN01-5-3 standards (Dewald et al., 2013, doi:10.1016/j.nimb.2012.04.030) that are consistent with a 10Be half-life of 1.36 ± 0.07 x10^6 yrˉ¹ (Nishiizumi et al., 2007, doi:10.1016/j.nimb.2007.01.297). [10Be]m was calculated from the normalized and blank-corrected 10Be/9Be ratios. The reported 1σ uncertainties include counting statistics and the uncertainties of both standard normalization and blank correction. Stable 9Be concentrations were measured on a separate aliquot of the sample solution using inductively coupled plasma optical emission spectroscopy (ICP-OES). Uncertainty of ICP-OES measurements was 5%.
    Keywords: Accelerator mass spectrometry (AMS); AR17DS-001; AR17MR-05; AR17MR-06; AR17MR-07; AR17MR-08; AR17MR-11; AR17MR-12; AR17MR-13; AR17MR-14; AR17MR-24; AR17MR-25; AR17MR-26; AR17MR-27; AR17MR-30; AR17MR-31; AR17MR-32; AR17MR-33; AR17MR-34; AR17MR-35; AR17MR-36; AR17MR-42; AR17MR-43; AR17MR-44; AR17MR-45; AR17MR-46; Beryllium-10; Beryllium-10, standard deviation; Beryllium-10/Beryllium-9; Beryllium-10/Beryllium-9, standard deviation; Beryllium-9; Beryllium-9, standard deviation; Calculated/normalized; CONFLUENCE; DEPTH, water; Distance; El Colgado; ELEVATION; Embarcacion; Event label; Gas sorption analyszer (Quantachrome NOVAtouch LX) and BET-method (Brunauer et al., 1938); General Mansilla; Grain Size; integrated; LATITUDE; LONGITUDE; Median, grain size; meteoric 10Be; OSL; pH; Puerto lavalle; Reserva Natural Formosa; Rio San Francisco; river sediment; Sample ID; Scattering Particle Size Distribution Analyzer LA-950 (Horiba); Size fraction 〈 0.063 mm, mud, silt+clay; Specific surface area; Suspended sediment concentration
    Type: Dataset
    Format: text/tab-separated-values, 401 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-06-21
    Description: To study the transformation of organic carbon through long distance transport in rivers, we measured the composition of bulk organic carbon in river suspended sediment of the Rio Bermejo (northern Argentina). This river has a ~1300 km lowland flowpath with no significant tributaries. We collected fluvial suspended sediment in vertical depth profiles at five sampling locations along the length of the Rio Bermejo (northern Argentina) during near-bankfull conditions, when discharge varied between 675 and 1080 m3/s and banks were actively eroding. Additionally, we collected one depth profile from the Rio San Francisco (RSF) and one from the Rio Bermejo 10 km upstream of the RSF confluence. Combining these profiles and weighting them by the relative proportions of their total sediment load input to the mainstem Bermejo serves as a depth profile representing the headwaters. At each depth profile location, we collected water and suspended sediment from the channel thalweg by boat. We used a weighted 8-liter horizontal sampling bottle (Wildco Beta Plus bottle) with an attached pressure transducer to measure sampling depth. We separated sediment from the water using a custom-built 5-liter pressurized filtration unit with a 293 mm diameter, 0.2 µm polyethersulfone filter. In the laboratory, we rinsed sediment off the filters directly into an evaporating dish with ultrapure 18.2 MΩ water (pH~7). Samples were dried in an oven at 40ºC, and subsequently homogenized. Sediment particle size distributions were measured on ~10 mg aliquots using a laser diffraction particle size analyzer (Horiba LA-950). Specific surface area (SSA) of bulk sediment samples was measured on ~4 g aliquots using a Quantachrome NOVAtouch LX gas sorption analyzer and the Brunauer, Emmett, and Teller (BET) theory (Brunauer et al., 1938). Aliquots for organic carbon measurements were first treated with 4% HCl solution to remove inorganic carbon, following Galy et al. (2007, doi:10.1111/j.1751-908X.2007.00864.x). Total organic carbon (TOCPOC) and δ13C of POC was measured in duplicate at Durham University using a Costech elemental analyzer (EA) coupled to a CONFLO III and Thermo Scientific Delta V Advantage isotope ratio mass spectrometer (IRMS). Radiocarbon content was measured using an EA coupled to an accelerator mass spectrometer (EA-AMS) at ETH Zurich. We report 14C content as fraction modern (F14C), by normalizing measurements to 95% of the 1950 NBS Oxalic Acid II standard (δ13C = -17.8‰) and correcting for mass-dependent fractionation using a common δ13C value of -25‰. OC loading is the mass of organic carbon in a sample normalized by the sample's specific surface area (SSA). Reactive metals in the amorphous oxyhydroxide and crystalline oxide grain coatings, were extracted from the sediment samples using a procedure adapted from Wittmann et al. (2012, doi:10.1016/j.chemgeo.2012.04.031). The extracted oxyhydroxides and oxides were dried down and diluted in 3M HNO3. A 100 μl aliquot was taken for measurement of metal concentrations. Al, Fe, Mg, and Mn concentrations were measured using inductively coupled plasma optical emission spectroscopy (ICP-OES). Uncertainty of ICP-OES measurements was 〈5%. All depth-integrated values are calculated as a function of the suspended sediment concentration relative to the depth-averaged suspended sediment concentration.
    Keywords: Aluminium, reactive; AR17MR-05; AR17MR-06; AR17MR-07; AR17MR-08; AR17MR-11; AR17MR-12; AR17MR-13; AR17MR-14; AR17MR-24; AR17MR-25; AR17MR-26; AR17MR-27; AR17MR-30; AR17MR-31; AR17MR-32; AR17MR-33; AR17MR-34; AR17MR-35; AR17MR-36; AR17MR-42; AR17MR-43; AR17MR-44; AR17MR-45; AR17MR-46; Carbon, organic, loading; Carbon, organic, loading, standard error; Carbon, organic, total; Carbon, organic, total, standard error; CONFLUENCE; DATE/TIME; Depth, relative; Depth comment; Distance; El Colgado; Element analyser CHN (Costech) coupled to a CONFLO III and Thermo Scientific Delta V Advantage isotope ratio mass spectrometer (IRMS); Element analyzer coupled to an accelerator mass spectrometer (EA-AMS); ELEVATION; Embarcacion; Event label; Fraction modern carbon; Fraction modern carbon, standard error; Gas sorption analyszer (Quantachrome NOVAtouch LX) and BET-method (Brunauer et al., 1938); General Mansilla; Grain Size; ICP-OES, Inductively coupled plasma - optical emission spectrometry; Iron, reactive; LATITUDE; LONGITUDE; Magnesium, reactive; Manganese, reactive; Median, grain size; Normalized; oxyhydroxide; Particulate organic carbon; Puerto lavalle; radiocarbon; Reactive minerals, total; Reserva Natural Formosa; Rio San Francisco; river sediment; Sample ID; Scattering Particle Size Distribution Analyzer LA-950 (Horiba); Sediment transit time; Sediment transit time, uncertainty; Size fraction 〈 0.030 mm; Specific surface area; surface area; Suspended sediment concentration; TOC; Weighted average; δ13C; δ13C, standard error
    Type: Dataset
    Format: text/tab-separated-values, 528 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-05-01
    Description: We use cosmogenic nuclide-derived denudation rates from in situ-produced 10Be in river sediment to determine sediment production rates for the central Amazon River and its major tributaries. Recent developments have shown that this method allows calculating denudation rates in large depositional basins despite intermediate sediment storage, with the result that fluxes of the sediment-producing hinterland can now be linked to those discharged at the basins' outlet. In rivers of the central Amazonian plain, sediment of finer grain sizes (125-500 {micro}m) yields a weighted cosmogenic nuclide-derived denudation rate of 0.24 {+/-} 0.02 mm/yr that is comparable to the integrated rate of all main Andean-draining rivers (0.37 {+/-} 0.06 mm/yr), which are the Beni, Napo, Mamore, Ucayali, and Maranon rivers. Coarser-grained sediment (〉500 {micro}m) of central Amazonian rivers is indicative of a source from the tectonically stable cratonic headwaters of the Guyana and Brazilian shields, for which the denudation rate is 0.01-0.02 mm/yr. Respective sediment loads can be calculated by converting these cosmogenic nuclide-derived rates using their sediment-producing areas. For the Amazon River at Obidos, a sediment production rate of [~]610 Mt/yr results; non-Andean source areas contribute only [~]45 Mt/yr. A comparison with published modern sediment fluxes shows similarities within a factor of [~]2 with an average gauging-derived sediment load of [~]1000 Mt/yr at Obidos, for example. We attribute this similar trend in cosmogenic versus modern sediment loads first to the absence of long-term deposition within the basin and second to the buffering capability of the large Amazon floodplain. The buffering capability dampens short-term, high-amplitude fluctuations (climatic variability in source areas and anthropogenic soil erosion) by the time the denudation rate signal of the hinterland is transmitted to the outlet of the basin.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-01-11
    Description: Beryllium isotopes have emerged as a quantitative tracer of continental weathering, but accurate and precise determination of the cosmogenic 10 Be and stable 9 Be in seawater is challenging, because seawater contains high concentrations of matrix elements but extremely low concentrations of 9 Be and 10 Be. In this study, we develop a new, time‐efficient procedure for the simultaneous preconcentration of 9 Be and 10 Be from (coastal) seawater based on the iron co‐precipitation method. The concentrations of 9 Be, 10 Be, and the resulting 10 Be/ 9 Be ratio for Changjiang Estuary water derived from the new procedure agree well with those obtained from the conventional procedure requiring separate preconcentration for 9 Be and 10 Be determinations. By avoiding the separate preconcentration, our newly developed procedure contributes toward more time‐efficient handling of samples, less sample cross‐contamination, and a more reliable 10 Be/ 9 Be ratio. Prior to this, we validated the iron co‐precipitation method using artificial seawater and natural water samples from the Amazon Estuary regarding: (1) the “matrix effect” for Be analysis, (2) its extraction efficiency for pg g −1 levels Be in the presence and absence of organic matter, and (3) the data comparability with another preconcentration method. We calculated that for the determination of 9 Be and 10 Be in most open ocean seawater with typical 10 Be concentrations of 〉 500 atoms g −1 , good precisions (〈 5%) can be achieved using less than 3 liters of seawater compared to more than 20 liters routinely used previously. Even for coastal seawater with extremely low 10 Be concentration (e.g., 100 atoms g −1 ), we estimate a maximum amount of 10 liters to be adequate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: The Amundsen Sea Embayment of West Antarctica hosts one of the most rapidly changing sectors of the West Antarctic Ice Sheet. With the fastest-flowing ice streams in Antarctica, the region around Pine Island Bay is characterized by rapid ice-sheet thinning and grounding-line retreat. Published surface-exposure data are limited to a few isolated nunataks making it difficult to assess the long-term deglacial history of the area. To address this, we correlate existing records of lateral ice-stream retreat from marine sediment cores with onshore glacial thinning in two key areas of eastern Marie Byrd Land: the Kohler Range and Pine Island Bay. Our 10Be surface-exposure ages are the first from the isolated Kohler Range and show that the nunataks there became ice-free between 8.6 and 12.6 ka. This implies a minimum long-term average thinning rate of 3.3 ± 0.3 cm/yr, which is one order of magnitude lower than recent rates based on satellite data. We also present pre- to early Holocene 10Be surface-exposure ages from two islands located approximately 80 km downstream of the Pine Island Glacier ice-shelf front to constrain the lateral deglacial history in the Pine Island Bay area. This study provides insight into the significance of local ice sheet variations and suggests that the post-LGM history in the Amundsen Sea sector was characterized by glacial thinning as well as lateral retreat in pre- to early Holocene times.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-04-05
    Description: Abstract The novel 10Be (meteoric)/9Be system, where 10Be is delivered by precipitation and stable 9Be is released by weathering, provides denudation rates over weathering‐erosion timescales. The new tool is applicable to quartz‐poor lithologies, for example, mafic rock and claystone, which are not readily accessible by the commonly used in situ‐produced 10Be in quartz. We provide a first application of this proxy to a tectonically active mountainous river, the Zhuoshui River in Taiwan. Taiwan Rivers supply a disproportionately high suspended and dissolved flux to the oceans and are often underlain by fine‐grained shale/slate. 10Be (meteoric)/9Be‐derived denudation rates (Dmet) from the Zhuoshui Catchment are highest in the slate‐dominated headwaters (4–8 mm/year), and much lower (1–2 mm/year) along the midlower reaches with mixed lithologies. At the basin‐wide scale, we find a poor correlation between Dmet and basin‐averaged channel steepness despite a small climatic gradient. Because large lithological heterogeneities exist in this basin, we invoke a lithological effect to explain this poor correlation. Relying on a revised stream power incision model that incorporates rock erodibility, the resulting lithology‐ and runoff‐adjusted ksn (kLrsn) can be reconciled with denudation rates with the highest erodibility predicted to prevail in the Miocene slate of low metamorphic grade and high fracture density. This model suggests that the lithological heterogeneity can alter the coupling between surface denudation and channel morphology. On a broader perspective, the successful application of the 10Be (meteoric)/9Be proxy shows its applicability as a tracer for erosion and sediment transport processes in fast‐eroding mountain belts underlain by slate lithologies.
    Description: Key Points 10Be (meteoric)/9Be ratios quantify fast denudation of slate regions in Taiwan Topographic metrics and denudation rates show different spatial patterns Lithologic variability alters coupling between denudation rates and ksn, based on a revised stream power model including rock erodibility
    Description: Freie Universität Berlin‐China Scholarship Council PhD Program
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Keywords: ddc:551.3
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...