GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    Publication Date: 2023-03-14
    Keywords: Acidobacteria; Actinobacteria; Aridity index; aridity indices; brGDGTs; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; DS11; DS11_soil; DS21; DS21_soil; DS31; DS31_soil; DS41; DS41_soil; DS51; DS51_soil; DS71; DS71_soil; DS81; DS81_soil; DS91; DS91_soil; Elevation of event; Event label; Inner Mongolia, China; Latitude of event; Longitude of event; MS11; MS11_soil; MS21; MS21_soil; MS31; MS31_soil; MS41; MS41_soil; MS51; MS51_soil; MS61; MS61_soil; MS71; MS71_soil; MS81; MS81_soil; Optional event label; Organic carbon, soil; pH; Precipitation, annual mean; soil pH; SOILS; Soil sample; Temperature, annual mean; TS101; TS101_soil; TS11; TS11_soil; TS111; TS111_soil; TS121; TS121_soil; TS131; TS131_soil; TS141; TS141_soil; TS151; TS151_soil; TS161; TS161_soil; TS21; TS21_soil; TS31; TS31_soil; TS41; TS41_soil; TS51; TS51_soil; TS61; TS61_soil; TS71; TS71_soil; TS81; TS81_soil; TS91; TS91_soil; Vegetation type; Verrucomicrobia
    Type: Dataset
    Format: text/tab-separated-values, 256 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-13
    Description: In this dataset, the basic environmental parameters, branched glycerol dialkyl glycerol tetraethers (brGDGTs) and soil bacterial community composition along an aridity soil transect in Inner Mongolia are included. In total, 32 surface soil samples (0-10 cm) were investigated, and the vegetation is characteried as desert steppe, typical steppe, and meadow steppe, repectively. The brGDGTs were extracted uisng a modified Bligh-Dyer method at the Institute of Botany, Chinese Academy of Sciences, and were subquently analyzed on a ultra high performance liquid chromatography mass spectrometer (UHPLC-MS) at Utrecht University. The bacterial DNA was analyzed using the MoBio PowerSoil DNA isolation Kit, and were further processed at the Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
    Keywords: Acidobacteria; Actinobacteria; aridity indices; brGDGTs; soil pH; Verrucomicrobia
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-07
    Keywords: Acidobacteria; Actinobacteria; aridity indices; Branched glycerol dialkyl glycerol tetraether; Branched glycerol dialkyl glycerol tetraether, Ia; Branched glycerol dialkyl glycerol tetraether, Ib; Branched glycerol dialkyl glycerol tetraether, Ic; Branched glycerol dialkyl glycerol tetraether, IIa; Branched glycerol dialkyl glycerol tetraether, IIa'; Branched glycerol dialkyl glycerol tetraether, IIb; Branched glycerol dialkyl glycerol tetraether, IIb'; Branched glycerol dialkyl glycerol tetraether, IIc; Branched glycerol dialkyl glycerol tetraether, IIc'; Branched glycerol dialkyl glycerol tetraether, IIIa; Branched glycerol dialkyl glycerol tetraether, IIIa'; Branched glycerol dialkyl glycerol tetraether, IIIb; Branched glycerol dialkyl glycerol tetraether, IIIb'; brGDGTs; Cyclization ratio of branched tetraethers; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; DS11; DS11_soil; DS21; DS21_soil; DS31; DS31_soil; DS41; DS41_soil; DS51; DS51_soil; DS71; DS71_soil; DS81; DS81_soil; DS91; DS91_soil; Event label; Inner Mongolia, China; Isomer ratio; Methylation index of branched tetraethers; MS11; MS11_soil; MS21; MS21_soil; MS31; MS31_soil; MS41; MS41_soil; MS51; MS51_soil; MS61; MS61_soil; MS71; MS71_soil; MS81; MS81_soil; Number of cyclopentane moieties of 5-methyl pentamethylated brGDGTs; Number of cyclopentane moieties of 6-methyl pentamethylated brGDGTs; Number of cyclopentane moieties of tetramethylated branched glycerol dialkyl glycerol tetraether; soil pH; SOILS; Soil sample; Temperature, air; TS101; TS101_soil; TS11; TS11_soil; TS111; TS111_soil; TS121; TS121_soil; TS131; TS131_soil; TS141; TS141_soil; TS151; TS151_soil; TS161; TS161_soil; TS21; TS21_soil; TS31; TS31_soil; TS41; TS41_soil; TS51; TS51_soil; TS61; TS61_soil; TS71; TS71_soil; TS81; TS81_soil; TS91; TS91_soil; Ultra high performance liquid chromatography mass spectrometer (UHPLC-MS); Verrucomicrobia
    Type: Dataset
    Format: text/tab-separated-values, 768 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-07-10
    Keywords: Acidobacteria; Actinobacteria; aridity indices; Armatimonadetes; Bacteria, unclassified; Bacteroidetes; brGDGTs; Chloroflexi; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; DS11; DS11_soil; DS21; DS21_soil; DS31; DS31_soil; DS41; DS41_soil; DS51; DS51_soil; DS71; DS71_soil; DS81; DS81_soil; DS91; DS91_soil; Elevation of event; Event label; Firmicutes; Gemmatimonadetes; Inner Mongolia, China; Latitude of event; Longitude of event; MS11; MS11_soil; MS21; MS21_soil; MS31; MS31_soil; MS41; MS41_soil; MS51; MS51_soil; MS61; MS61_soil; MS71; MS71_soil; MS81; MS81_soil; Nitrospirae; Optional event label; Planctomycetes; Proteobacteria; soil pH; SOILS; Soil sample; TS101; TS101_soil; TS11; TS11_soil; TS111; TS111_soil; TS121; TS121_soil; TS131; TS131_soil; TS141; TS141_soil; TS151; TS151_soil; TS161; TS161_soil; TS21; TS21_soil; TS31; TS31_soil; TS41; TS41_soil; TS51; TS51_soil; TS61; TS61_soil; TS71; TS71_soil; TS81; TS81_soil; TS91; TS91_soil; Verrucomicrobia
    Type: Dataset
    Format: text/tab-separated-values, 704 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 12 (2015): 4841-4860, doi:10.5194/bg-12-4841-2015.
    Description: Hydrolyzable organic carbon (OC) comprises a significant component of sedimentary particulate matter transferred from land into oceans via rivers. Its abundance and nature are however not well studied in Arctic river systems, and yet may represent an important pool of carbon whose fate remains unclear in the context of mobilization and related processes associated with a changing climate. Here, we examine the molecular composition and source of hydrolyzable compounds isolated from sedimentary particles derived from nine rivers across the pan-Arctic. Bound fatty acids (b-FAs), hydroxy FAs, n-alkane-α,ω-dioic acids (DAs) and phenols were the major components released upon hydrolysis of these sediments. Among them, b-FAs received considerable inputs from bacterial and/or algal sources, whereas ω-hydroxy FAs, mid-chain substituted acids, DAs, and hydrolyzable phenols were mainly derived from cutin and suberin of higher plants. We further compared the distribution and fate of suberin- and cutin-derived compounds with those of other terrestrial biomarkers (plant wax lipids and lignin phenols) from the same Arctic river sedimentary particles and conducted a benchmark assessment of several biomarker-based indicators of OC source and extent of degradation. While suberin-specific biomarkers were positively correlated with plant-derived high-molecular-weight (HMW) FAs, lignin phenols were correlated with cutin-derived compounds. These correlations suggest that, similar to leaf-derived cutin, lignin was mainly derived from litter and surface soil horizons, whereas suberin and HMW FAs incorporated significant inputs from belowground sources (roots and deeper soil). This conclusion is supported by the negative correlation between lignin phenols and the ratio of suberin-to-cutin biomarkers. Furthermore, the molecular composition of investigated biomarkers differed between Eurasian and North American Arctic rivers: while lignin dominated in the terrestrial OC of Eurasian river sediments, hydrolyzable OC represented a much larger fraction in the sedimentary particles from Colville River. Hence, studies exclusively focusing on either plant wax lipids or lignin phenols will not be able to fully unravel the mobilization and fate of bound OC in Arctic rivers. More comprehensive, multi-molecular investigations are needed to better constrain the land–ocean transfer of carbon in the changing Arctic, including further research on the degradation and transfer of both free and bound components in Arctic river sediments.
    Description: X. Feng acknowledges support from the Chinese National Key Development Program for Basic Research (2014CB954003, 2015CB954201). The ISSS program is supported by the Knut and Alice Wallenberg Foundation, headquarters of the Russian Academy of Sciences, the Swedish Research Council, the US National Oceanic and Atmospheric Administration, the Russian Foundation of Basic Research (#13-05-12028, 13-05-12041), the Swedish Polar Research Secretariat and the Nordic Council of Ministers (Arctic Co-Op and TRI-DEFROST programs). Collection of the Mackenzie sediment samples was supported by Fisheries and Oceans Canada and Indian and Northern Affairs Canada as part of the NOGAP B.6 project. Ö. Gustafsson acknowledges an Academy Research Fellow grant from the Swedish Royal Academy of Sciences. I. P. Semiletov and O. V. Dudarev thank the Government of the Russian Federation (#2013-220-04-157) for support as well as A. I. Khanchuk personally. T. I. Eglinton acknowledges support from Swiss National Science foundation (SNF) grant no. 200021_140850, and grants OCE-9907129, OCE-0137005, and OCE-0526268 from the US National Science Foundation (NSF), the Stanley Watson Chair for Excellence in Oceanography, and ETH Zurich. J. E. Vonk is thankful for support from NWO Rubicon (#825.10.022) and Veni (#863.12.004). B. E. van Dongen is thankful for support from the UK NERC (NE/I024798/1). R. M. Holmes acknowledges support from NSF 0436118, NSF 0732555, and NSF 1107774. X. Feng thanks WHOI for a postdoctoral scholar fellowship and for postdoctoral support from ETH Zurich.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 105 (2013): 14-30, doi:10.1016/j.gca.2012.11.034.
    Description: Plant wax lipids and lignin phenols are the two most common classes of molecular markers that are used to trace vascular plant-derived OM in the marine environment. However, their 13C and 14C compositions have not been directly compared, which can be used to constrain the flux and attenuation of terrestrial carbon in marine environment. In this study, we describe a revised method of isolating individual lignin phenols from complex sedimentary matrices for 14C analysis using high pressure liquid chromatography (HPLC) and compare this approach to a method utilizing preparative capillary gas chromatography (PCGC). We then examine in detail the 13C and 14C compositions of plant wax lipids and lignin phenols in sediments from the inner and mid shelf of the Washington margin that are influenced by discharge of the Columbia River. Plant wax lipids (including n-alkanes, n-alkanoic (fatty) acids, n-alkanols, and n-aldehydes) displayed significant variability in both δ13C (-28.3 to -37.5 ‰) and ∆14C values (-204 to +2 ‰), suggesting varied inputs and/or continental storage and transport histories. In contrast, lignin phenols exhibited similar δ13C values (between -30 to -34 ‰) and a relatively narrow range of ∆14C values (-45 to -150 ‰; HPLC-based mesurement) that were similar to, or younger than, bulk OM (-195 to -137 ‰). Moreover, lignin phenol 14C age correlated with the degradation characteristics of this terrestrial biopolymer in that vanillyl phenols were on average ~500 years older than syringyl and cinnamyl phenols that degrade faster in soils and sediments. The isotopic characteristics, abundance, and distribution of lignin phenols in sediments suggest that they serve as promising tracers of recently biosynthesized terrestrial OM during supply to, and dispersal within the marine environment. Lignin phenol 14C measurements may also provide useful constraints on the vascular plant end member in isotopic mixing models for carbon source apportionment, and for interpretation of sedimentary records of past vegetation dynamics. Key words: 14C and 13C composition, radiocarbon age, plant wax lipids, lignin phenols, Washington margin, marine carbon cycling, terrestrial organic matter
    Description: Grants OCE-9907129, OCE-0137005, and OCE-0526268 (to TIE) from the National Science Foundation (NSF) supported this research.
    Keywords: 14C and 13C composition ; Radiocarbon age ; Plant wax lipids ; Lignin phenols ; Washington margin ; Marine carbon cycling ; Terrestrial organic matter
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 29 (2015): 1855–1873, doi:10.1002/2015GB005204.
    Description: Distinguishing the sources, ages, and fate of various terrestrial organic carbon (OC) pools mobilized from heterogeneous Arctic landscapes is key to assessing climatic impacts on the fluvial release of carbon from permafrost. Through molecular 14C measurements, including novel analyses of suberin- and/or cutin-derived diacids (DAs) and hydroxy fatty acids (FAs), we compared the radiocarbon characteristics of a comprehensive suite of terrestrial markers (including plant wax lipids, cutin, suberin, lignin, and hydroxy phenols) in the sedimentary particles from nine major arctic and subarctic rivers in order to establish a benchmark assessment of the mobilization patterns of terrestrial OC pools across the pan-Arctic. Terrestrial lipids, including suberin-derived longer-chain DAs (C24,26,28), plant wax FAs (C24,26,28), and n-alkanes (C27,29,31), incorporated significant inputs of aged carbon, presumably from deeper soil horizons. Mobilization and translocation of these “old” terrestrial carbon components was dependent on nonlinear processes associated with permafrost distributions. By contrast, shorter-chain (C16,18) DAs and lignin phenols (as well as hydroxy phenols in rivers outside eastern Eurasian Arctic) were much more enriched in 14C, suggesting incorporation of relatively young carbon supplied by runoff processes from recent vegetation debris and surface layers. Furthermore, the radiocarbon content of terrestrial markers is heavily influenced by specific OC sources and degradation status. Overall, multitracer molecular 14C analysis sheds new light on the mobilization of terrestrial OC from arctic watersheds. Our findings of distinct ages for various terrestrial carbon components may aid in elucidating fate of different terrestrial OC pools in the face of increasing arctic permafrost thaw.
    Description: Chinese National Key Development Program for Basic Research Grant Numbers: 2014CB954003, 2015CB954201; Knut and Alice Wallenberg Foundation; Headquarters of the Russian Academy of Sciences; Swedish Research Council; US National Oceanic and Atmospheric Administration; Russian Foundation of Basic Research Grant Numbers: (13-05-12028, 13-05-12041; Swedish Polar Research Secretariat; Nordic Council of Ministers; Government of the Russian Federation Grant Number: 2013-220-04-157; Swiss National Science foundation. Grant Number: (200021_140850 US National Science Foundation (NSF) Grant Numbers: OCE-9907129, OCE-0137005, OCE-0526268; Stanley Watson Chair for Excellence in Oceanography Grant Number: 825.10.022; ETH Zürich; NWO Rubicon; Veni Grant Number: 863.12.004; UK NERC Grant Number: NE/I024798/1; NSF. Grant Numbers: 0436118, 0732555, 1107774
    Description: 2016-05-02
    Keywords: Compound-specific radiocarbon analysis ; Terrestrial carbon markers ; Pan-arctic rivers ; Diacids ; Lignin ; Plant wax lipids
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 110 (2013): 14168–14173, doi:10.1073/pnas.1307031110.
    Description: Mobilization of Arctic permafrost carbon is expected to increase with warming-induced thawing. However, this effect is challenging to assess due to the diverse processes controlling the release of various organic carbon (OC) pools from heterogeneous Arctic landscapes. Here, by radiocarbon dating various terrestrial OC components in fluvially- and coastally-integrated estuarine sediments, we present a unique framework for deconvoluting the contrasting mobilization mechanisms of surface versus deep (permafrost) carbon pools across the climosequence of the Eurasian Arctic. Vascular-plant-derived lignin phenol 14C contents reveal significant inputs of young carbon from surface sources whose delivery is dominantly controlled by river runoff. In contrast, plant wax lipids predominantly trace ancient (permafrost) OC that is preferentially mobilized from discontinuous permafrost regions where hydrological conduits penetrate deeper into soils and thermokarst erosion occurs more frequently. As river runoff has significantly increased across the Eurasian Arctic in recent decades, we estimate from an isotopic mixing model that, in tandem with an increased transfer of young surface carbon, the proportion of mobilized terrestrial OC accounted for by ancient carbon has increased by 3-6% between 1985-2004. These findings suggest that, while partly masked by surface-carbon export, climate-change-induced mobilization of old permafrost carbon is well under way in the Arctic.
    Description: The ISSS program is supported by the Knut and Alice Wallenberg Foundation, the Far Eastern Branch of the Russian Academy of Sciences, the Swedish Research Council, the US National Oceanic and Atmospheric Administration, the Russian Foundation of Basic Research, the Swedish Polar Research Secretariat and the Nordic Council of Ministers (Arctic Co-Op and TRI-DEFROST programs). Ö.G. acknowledges an Academy Research Fellow grant from the Swedish Royal Academy of Sciences. Grants OCE-9907129, OCE-0137005, and OCE-0526268 from the US National Science Foundation (NSF), the Stanley Watson Chair for Excellence in Oceanography (to T.I.E.) and ETH Zürich enabled this research. J.E.V. thanks support from NWO-Rubicon (#825.10.022). B.E.v.D thanks support from the UK NERC (NE/I024798/1). X.F. thanks WHOI for a postdoctoral scholar fellowship and for postdoctoral support from ETH Zürich.
    Description: 2014-01-01
    Keywords: Fluvial mobilization ; Compound-specific 14C ; Hydrogeographic control
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 121 (2016): 1316–1338, doi:10.1002/2016JG003323.
    Description: While lignin geochemistry has been extensively investigated in the Amazon River, little is known about lignin distribution and dynamics within deep, stratified river channels or its transformations within soils prior to delivery to rivers. We characterized lignin phenols in soils, river particulate organic matter (POM), and dissolved organic matter (DOM) across a 4 km elevation gradient in the Madre de Dios River system, Peru, as well as in marine sediments to investigate the source-to-sink evolution of lignin. In soils, we found more oxidized lignin in organic horizons relative to mineral horizons. The oxidized lignin signature was maintained during transfer into rivers, and lignin was a relatively constant fraction of bulk organic carbon in soils and riverine POM. Lignin in DOM became increasingly oxidized downstream, indicating active transformation of dissolved lignin during transport, especially in the dry season. In contrast, POM accumulated undegraded lignin downstream during the wet season, suggesting that terrestrial input exceeded in-river degradation. We discovered high concentrations of relatively undegraded lignin in POM at depth in the lower Madre de Dios River in both seasons, revealing a woody undercurrent for its transfer within these deep rivers. Our study of lignin evolution in the soil-river-ocean continuum highlights important seasonal and depth variations of river carbon components and their connection to soil carbon pools, providing new insights into fluvial carbon dynamics associated with the transfer of lignin biomarkers from source to sink.
    Description: U.S. National Science Foundation Grant Number: 1227192; National Program on Key Basic Research Project Grant Number: 2015CB954201; National Natural Science Foundation of China Grant Number: 41422304; Natural Environment Research Council NE/F002149/1 Grant Number: FT110100457; European Union Marie Curie Fellowship Grant Number: FP7-2012-329360; NSF Grant Number: OCE-0934073
    Description: 2016-11-21
    Keywords: Lignin phenols ; Dissolved organic matter (DOM) ; Particulate organic matter (POM) ; Andes ; Amazon ; Depth profile
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Author Posting. © National Academy of Sciences, 2019. This article is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences 116(45), (2019): 22518-22525, doi:10.1073/pnas.1913714116.
    Description: The Ganges–Brahmaputra (G-B) River system transports over a billion tons of sediment every year from the Himalayan Mountains to the Bay of Bengal and has built the world’s largest active sedimentary deposit, the Bengal Fan. High sedimentation rates drive exceptional organic matter preservation that represents a long-term sink for atmospheric CO2. While much attention has been paid to organic-rich fine sediments, coarse sediments have generally been overlooked as a locus of organic carbon (OC) burial. However, International Ocean Discovery Program Expedition 354 recently discovered abundant woody debris (millimeter- to centimeter-sized fragments) preserved within the coarse sediment layers of turbidite beds recovered from 6 marine drill sites along a transect across the Bengal Fan (∼8°N, ∼3,700-m water depth) with recovery spanning 19 My. Analysis of bulk wood and lignin finds mostly lowland origins of wood delivered episodically. In the last 5 My, export included C4 plants, implying that coarse woody, lowland export continued after C4 grassland expansion, albeit in reduced amounts. Substantial export of coarse woody debris in the last 1 My included one wood-rich deposit (∼0.05 Ma) that encompassed coniferous wood transported from the headwaters. In coarse layers, we found on average 0.16 weight % OC, which is half the typical biospheric OC content of sediments exported by the modern G-B Rivers. Wood burial estimates are hampered by poor drilling recovery of sands. However, high-magnitude, low-frequency wood export events are shown to be a key mechanism for C burial in turbidites.
    Description: This work was funded by National Science Foundation Grants OCE-1401217 and COL-T354A55 to S.J.F. and OCE-1400805 to V.G. Graduate student participation in the project received support from University of Southern California Provost’s Fellowship to H.L. Samples were provided by the International Ocean Discovery Program. We are grateful for the efforts of the Expedition 354 Science Party, Carl Johnson, and Zongguang Liu. C.F.-L. and A.G. were supported by IODP-France. We thank Colin Osborne and Maria Vorontsova for helpful discussions.
    Description: 2020-04-21
    Keywords: carbon cycle ; wood ; lignin ; Himalaya ; Bengal Fan
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...