GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kirkels, Frédérique M S A; Ponton, Camilo; Galy, Valier; West, A Joshua; Feakins, Sarah J; Peterse, Francien (2019): From Andes to Amazon: assessing branched tetraether lipids as tracers for soil Organic Carbon in the Madre de Dios River system. Journal of Geophysical Research: Biogeosciences, https://doi.org/10.1029/2019JG005270
    Publication Date: 2023-01-13
    Description: Geochemical data, brGDGT fractions and calculated indices for soils and river samples during the wet and dry season in the Madre de Dios catchment, Peru.
    Keywords: altitudinal transect; Amazon headwaters; Branched and isoprenoid tetraether index; Branched GDGTs; Branched glycerol dialkyl glycerol tetraether, Ia, fractional abundance; Branched glycerol dialkyl glycerol tetraether, Ib, fractional abundance; Branched glycerol dialkyl glycerol tetraether, Ic, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIa, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIa', fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIb, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIb', fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIc, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIc', fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIIa, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIIa', fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIIb, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIIb', fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIIc, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIIc', fractional abundance; Calculated from linear regression; Carbon, organic, total; Cyclization ratio of branched tetraethers; Degree of cyclisation; derived from pH; ELEVATION; in-situ production; Isomer ratio; LATITUDE; LONGITUDE; Madre_de_Dios_River_System; Madre de Dios River; MULT; Multiple investigations; Peru; pH, soil; Sample comment; Sample ID; soil inputs; Specific surface area; Sum branched glycerol dialkyl glycerol tetraether, per unit sediment mass; Suspended sediment concentration; Temperature, annual mean
    Type: Dataset
    Format: text/tab-separated-values, 2233 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-08
    Description: Isoprenoid and branched Glycerol Dialkyl Glycerol Tetraethers (GDGTs) have been analysed in a marine sediment core (NGHP-01-16A) in front of the Godavari River in the Bay of Bengal (16.59331°N,82.68345°E, 1268m m water depth). The core covers the Early to Late Holocene (~10000 years). The age model and %TOC are from Ponton et al. (2012) and Usman et al. (2018), respectively. TEX86 ratios and Sea Surface Temperatures were estimated following Kim et al. (2010).
    Keywords: AGE; Bay of Bengal; Branched and isoprenoid tetraether index; Branched glycerol dialkyl glycerol tetraether, Ia, fractional abundance; Branched glycerol dialkyl glycerol tetraether, Ib, fractional abundance; Branched glycerol dialkyl glycerol tetraether, Ic, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIa, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIa', fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIb, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIb', fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIc, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIc', fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIIa, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIIa', fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIIb, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIIb', fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIIc, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIIc', fractional abundance; Branched glycerol dialkyl glycerol tetraether, per unit mass total organic carbon; brGDGT; Calculated according to Kim et al. (2010); Carbon, organic, total; CDRILL; Core drilling; Crenarchaeol, fractional abundance; Crenarchaeol regio-isomer, fractional abundance; Curator/sampler; DEPTH, sediment/rock; Description; Godavari River; Holocene; India National Gas Hydrate Program Expedition 01; Indian Summer Monsoon; isoGDGT; Isoprenoid acyclic glycerol dialkyl glycerol tetraether, fractional abundance; Isoprenoid dicyclic glycerol dialkyl glycerol tetraether, fractional abundance; Isoprenoid monocyclic glycerol dialkyl glycerol tetraether, fractional abundance; Isoprenoid tricyclic glycerol dialkyl glycerol tetraether, fractional abundance; Joides Resolution; NGHP-01; NGHP-01-16A; Sample ID; Sea surface temperature; Sediment core; Tetraether index of 86 carbon atoms; Ultra-high-performance liquid chromatography (UHPLC; Agilent 1260 Infinity) coupled to a single quadrupole mass detector (Agilent 6130)
    Type: Dataset
    Format: text/tab-separated-values, 1439 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 242 (2018): 64-81, doi:10.1016/j.gca.2018.09.007.
    Description: Tropical montane regions tend to have high rates of precipitation, biological production, erosion, and sediment export, which together move material off the landscape and toward sedimentary deposits downstream. Plant wax biomarkers can be used to investigate sourcing of organic matter and are often used as proxies to reconstruct past climate and environment in sedimentary deposits. To understand how plant waxes are sourced within a wet, tropical montane catchment, we measure the stable C and H isotope composition (δ13C and δD) of n-alkanes and n-alkanoic acids in soils along an elevation transect and from sediments within the Madre de Dios River network along the eastern flank of the Peruvian Andes, draining an area of 75,400 km2 and 6 km of elevation. Soils yield systematic trends in plant wax δ13C (+1.75 and +1.31‰ km−1, for the C29n-alkanes and C30n-alkanoic acids respectively in the mineral horizon) and δD values (−10 and −12‰ km−1, respectively) across a 3.5 km elevation transect, which approximates trends previously reported from canopy leaves, though we find offsets between δ13C values in plants and soils. River suspended sediments generally follow soil isotopic gradients defined by catchment elevations (δ13C: +1.03 and +0.99‰ km−1 and δD: −10 to −7‰ km−1, for the C29n-alkanes and C30n-alkanoic acids respectively) in the wet season, with a lowering in the dry season that is less well-constrained. In a few river suspended sediments, petrogenic contributions and depth-sorting influence the n-alkane δ13C signal. Our dual isotope, dual compound class and seasonal sampling approach reveals no Andean-dominance in plant wax export, and instead that the sourcing of plant waxes in this very wet, forested catchment approximates that expected for spatial integration of the upstream catchment, thus with a lowland dominance on areal basis, guiding paleoenvironmental reconstructions in tropical montane regions. The dual isotope approach provides a cross-check on the altitudinal signals and can resolve ambiguity such as might be associated with vegetation change or aridity in paleoclimate records. Further, the altitude effect encoded within plant waxes presents a novel dual-isotope biomarker approach to paleoaltimetry.
    Description: This material is based upon work supported by the US National Science Foundation under Grant No. EAR-1227192 to A.J.W and S.J.F for the river work.
    Keywords: Plant wax ; Leaf wax ; Biomarker ; Hydrogen isotope ; Carbon isotope ; Andes ; Amazon ; Paleoaltimetry ; Source-to-sink
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 15 (2018): 3357-3375, doi:10.5194/bg-15-3357-2018.
    Description: The modern-day Godavari River transports large amounts of sediment (170 Tg per year) and terrestrial organic carbon (OCterr; 1.5 Tg per year) from peninsular India to the Bay of Bengal. The flux and nature of OCterr is considered to have varied in response to past climate and human forcing. In order to delineate the provenance and nature of organic matter (OM) exported by the fluvial system and establish links to sedimentary records accumulating on its adjacent continental margin, the stable and radiogenic isotopic composition of bulk OC, abundance and distribution of long-chain fatty acids (LCFAs), sedimentological properties (e.g. grain size, mineral surface area, etc.) of fluvial (riverbed and riverbank) sediments and soils from the Godavari basin were analysed and these characteristics were compared to those of a sediment core retrieved from the continental slope depocenter. Results show that river sediments from the upper catchment exhibit higher total organic carbon (TOC) contents than those from the lower part of the basin. The general relationship between TOC and sedimentological parameters (i.e. mineral surface area and grain size) of the sediments suggests that sediment mineralogy, largely driven by provenance, plays an important role in the stabilization of OM during transport along the river axis, and in the preservation of OM exported by the Godavari to the Bay of Bengal. The stable carbon isotopic (δ13C) characteristics of river sediments and soils indicate that the upper mainstream and its tributaries drain catchments exhibiting more 13C enriched carbon than the lower stream, resulting from the regional vegetation gradient and/or net balance between the upper (C4-dominated plants) and lower (C3-dominated plants) catchments. The radiocarbon contents of organic carbon (Δ14COC) in deep soils and eroding riverbanks suggests these are likely sources of "old" or pre-aged carbon to the Godavari River that increasingly dominates the late Holocene portion of the offshore sedimentary record. While changes in water flow and sediment transport resulting from recent dam construction have drastically impacted the flux, loci, and composition of OC exported from the modern Godavari basin, complicating reconciliation of modern-day river basin geochemistry with that recorded in continental margin sediments, such investigations provide important insights into climatic and anthropogenic controls on OC cycling and burial.
    Description: This project was supported by the Swiss National Science Foundations (“CAPS LOCK” grant no. 200021-140850 and “CAPS-LOCK2” grant no. 200021-163162). Francien Peterse received funding from NWO-Veni grant (grant no. 863.13.016). Liviu Giosan thanks grants from the National Science Foundation (OCE-0841736) and Woods Hole Oceanographic Institution.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Eglinton, T. I., Galy, V. V., Hemingway, J. D., Feng, X., Bao, H., Blattmann, T. M., Dickens, A. F., Gies, H., Giosan, L., Haghipour, N., Hou, P., Lupker, M., McIntyre, C. P., Montluçon, D. B., Peucker-Ehrenbrink, B., Ponton, C., Schefuß, E., Schwab, M. S., Voss, B. M., Wacker, L., Wu, Y., & Zhao, M. Climate control on terrestrial biospheric carbon turnover. Proceedings of the National Academy of Sciences of the United States of America, 118(8), (2021): e2011585118, htps://doi.org/ 10.1073/pnas.2011585118.
    Description: Terrestrial vegetation and soils hold three times more carbon than the atmosphere. Much debate concerns how anthropogenic activity will perturb these surface reservoirs, potentially exacerbating ongoing changes to the climate system. Uncertainties specifically persist in extrapolating point-source observations to ecosystem-scale budgets and fluxes, which require consideration of vertical and lateral processes on multiple temporal and spatial scales. To explore controls on organic carbon (OC) turnover at the river basin scale, we present radiocarbon (14C) ages on two groups of molecular tracers of plant-derived carbon—leaf-wax lipids and lignin phenols—from a globally distributed suite of rivers. We find significant negative relationships between the 14C age of these biomarkers and mean annual temperature and precipitation. Moreover, riverine biospheric-carbon ages scale proportionally with basin-wide soil carbon turnover times and soil 14C ages, implicating OC cycling within soils as a primary control on exported biomarker ages and revealing a broad distribution of soil OC reactivities. The ubiquitous occurrence of a long-lived soil OC pool suggests soil OC is globally vulnerable to perturbations by future temperature and precipitation increase. Scaling of riverine biospheric-carbon ages with soil OC turnover shows the former can constrain the sensitivity of carbon dynamics to environmental controls on broad spatial scales. Extracting this information from fluvially dominated sedimentary sequences may inform past variations in soil OC turnover in response to anthropogenic and/or climate perturbations. In turn, monitoring riverine OC composition may help detect future climate-change–induced perturbations of soil OC turnover and stocks.
    Description: This work was supported by grants from the US NSF (OCE-0928582 to T.I.E. and V.V.G.; OCE-0851015 to B.P.-E., T.I.E., and V.V.G.; and EAR-1226818 to B.P.-E.), Swiss National Science Foundation (200021_140850, 200020_163162, and 200020_184865 to T.I.E.), and National Natural Science Foundation of China (41520104009 to M.Z.).
    Keywords: Radiocarbon ; Plant biomarkers ; Carbon turnover times ; Fluvial carbon ; Carbon cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-03-02
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kirkels, F. M. S. A., Zwart, H. M., Usman, M. O., Hou, S., Ponton, C., Giosan, L., Eglinton, T., & Peterse, F. From soil to sea: sources and transport of organic carbon traced by tetraether lipids in the monsoonal Godavari River, India. Biogeosciences, 19(17), (2022): 3979–4010, https://doi.org/10.5194/bg-19-3979-2022.
    Description: Monsoonal rivers play an important role in the land-to-sea transport of soil-derived organic carbon (OC). However, spatial and temporal variation in the concentration, composition, and fate of this OC in these rivers remains poorly understood. We investigate soil-to-sea transport of soil OC by the Godavari River in India using glycerol dialkyl glycerol tetraether (GDGT) lipids in soils, river suspended particulate matter (SPM), and riverbed sediments, as well as in a marine sediment core from the Bay of Bengal. The abundance and composition of GDGTs in SPM and sediments in the Godavari River differs between the dry and wet season. In the dry season, SPM and riverbed sediments from the whole basin contain more 6-methyl branched GDGTs (brGDGTs) than the soils. In the upper basin, where mobilisation and transport of soils is limited due to deficient rainfall and damming, contributions of 6-methyl brGDGTs in SPM and riverbed sediments are relatively high year-round, suggesting that they have an aquatic source. Aquatic brGDGT production coincides with elevated values of the isoprenoid GDGT-0  crenarchaeol ratio in SPM and riverbed sediments from the upper basin, indicating low-oxygen conditions. In the wet season, brGDGT distributions in SPM from the lower basin closely resemble those in soils, mostly from the north and east tributaries, corresponding to precipitation patterns. The brGDGT composition in SPM and sediments from the delta suggests that soil OC is only effectively transported to the Bay of Bengal in the wet season, when the river plume extends beyond the river mouth. The sediment geochemistry indicates that also the mineral particles exported by the Godavari River primarily originate from the lower basin, similar to the brGDGTs, suggesting that they are transported together. However, river depth profiles in the downstream Godavari reveal no hydrodynamic sorting effect on brGDGTs in either season, indicating that brGDGTs are not closely associated with mineral particles. The similarity of brGDGT distributions in bulk and fine-grained sediments (≤ 63 µm) further confirms the absence of selective transport mechanisms. Nevertheless, the composition of brGDGTs in a Holocene, marine sediment core near the river mouth appears substantially different from that in the modern Godavari basin, suggesting that terrestrial-derived brGDGTs are rapidly lost upon discharge into the Bay of Bengal and/or overprinted by marine in situ production. The large change in brGDGT distributions at the river–sea transition implies that this zone is key in the transfer of soil OC, as well as that of the environmental signal carried by brGDGTs from the river basin.
    Description: This work was supported by the Netherlands Organisation for Scientific Research (NWO) (Veni grant no. 863.13.016 to FP).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kirkels, F. M. S. A., Ponton, C., Galy, V., West, A. J., Feakins, S. J., & Peterse, F. From Andes to Amazon: assessing branched tetraether lipids as tracers for soil organic carbon in the Madre de Dios River system. Journal of Geophysical Research-Biogeosciences, 125(1), (2020): e2019JG005270, doi:10.1029/2019JG005270.
    Description: We investigate the implications of upstream processes and hydrological seasonality on the transfer of soil organic carbon (OC) from the Andes mountains to the Amazon lowlands by the Madre de Dios River (Peru), using branched glycerol dialkyl glycerol tetraether (brGDGT) lipids. The brGDGT signal in Andean soils (0.5 to 3.5 km elevation) reflects air temperature, with a lapse rate of −6.0 °C/km elevation (r 2 = 0.89, p 〈 0.001) and −5.6 °C/km elevation (r 2 = 0.89, p 〈 0.001) for organic and mineral horizons, respectively. The same compounds are present in river suspended particulate matter (SPM) with a lapse rate of −4.1 °C/km elevation (r 2 = 0.82, p 〈 0.001) during the wet season, where the offset in intercept between the temperature lapse rates for soils and SPM indicates upstream sourcing of brGDGTs. The lapse rate for SPM appears insensitive to an increasing relative contribution of 6‐methyl isomer brGDGTs produced within the river. River depth profiles show that brGDGTs are well mixed in the river and are not affected by hydrodynamic sorting. The brGDGTs accumulate relative to OC downstream, likely due to the transition of particulate OC to the dissolved phase and input of weathered soils toward the lowlands. The temperature‐altitude correlation of brGDGTs in Madre de Dios SPM contrasts with the Lower Amazon River, where the initial soil signature is altered by changes in seasonal in‐river production and variable provenance of brGDGTs. Our study indicates that brGDGTs in the Madre de Dios River system are initially soil derived and highlights their use to study OC sourcing in mountainous river systems.
    Description: The brGDGT analyses were supported by NWO‐Veni grant 863.13.016 to F.P. This material is based upon work supported by the US National Science Foundation under grant EAR‐1227192 to A. J. W. and S. J. F. for the river fieldwork and lipid purification. In Perú, we thank the Servicio Nacional de Áreas Naturales Protegidas por el Estado (SERNANP) and personnel of Manu and Tambopata National Parks for logistical assistance and permission to work in the protected areas. We thank the Explorers' Inn and the Pontifical Catholic University of Perú (PUCP), as well as the Amazon Conservation Association for the use of the Tambopata and Wayqecha Research Stations, respectively. For river fieldwork assistance, we thank M. Torres, A. Robles, and A. Cachuana. Soil samples were contributed by Andrew Nottingham and Patrick Meir. Logistical support was provided by Y. Malhi, J. Huaman, W. Huaraca Huasco, and other collaborators as part of the Andes Biodiversity and Ecosystems Research Group ABERG (www.andesresearch.org). We thank Dominika Kasjaniuk for technical support at Utrecht. Two anonymous reviewers have provided valuable comments that have helped to improve this manuscript. Geochemical and brGDGT data are available in the PANGAEA Data Repository (Kirkels et al., 2019) and can be accessed at https://doi.pangaea.de/10.1594/PANGAEA.906170
    Keywords: Bacterial membrane lipids (brGDGTs) ; Altitude‐temperature relations ; Amazon headwaters ; Soil‐river connectivity ; Riverine organic carbon transport, brGDGT proxy signal
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2012
    Description: The Indian monsoon affects the livelihood of over one billion people. Despite the importance of climate to society, knowledge of long-term monsoon variability is limited. This thesis provides Holocene records of monsoon variability, using sediment cores from river-dominated margins of the Bay of Bengal (off the Godavari River) and the Arabian Sea (off the Indus River). Carbon isotopes of terrestrial plant leaf waxes (δ13Cwax) preserved in sediment provide integrated and regionally extensive records of flora for both sites. For the Godavari River basin the δ13Cwax record shows a gradual increase in aridity-adapted vegetation from ~4,000 until 1,700 years ago followed by the persistence of aridity-adapted plants to the present. The oxygen isotopic composition of planktonic foraminifera from this site indicates drought-prone conditions began as early as ~3,000 years BP. The aridity record also allowed examination of relationships between hydroclimate and terrestrial carbon discharge to the ocean. Comparison of radiocarbon measurements of sedimentary plant waxes with planktonic foraminifera reveal increasing age offsets starting ~4,000 yrs BP, suggesting that increased aridity slows carbon cycling and/or transport rates. At the second site, a seismic survey of the Indus River subaqueous delta describes the morphology and Holocene sedimentation of the Pakistani shelf and identified suitable coring locations for paleoclimate reconstructions. The δ13Cwax record shows a stable arid climate over the dry regions of the Indus plain and a terrestrial biome dominated by C4 vegetation for the last 6,000 years. As the climate became more arid ~4,000 years, sedentary agriculture took hold in central and south India while the urban Harappan civilization collapsed in the already arid Indus basin. This thesis integrates marine and continental records to create regionally extensive paleoenvironmental reconstructions that have implications for landscape evolution, sedimentation, the terrestrial organic carbon cycle, and prehistoric human civilizations in the Indian subcontinent.
    Description: This thesis was funded by the National Science Foundation, Woods Hole Oceanographic Institution (Arctic Research Initiative, Ocean and Climate Change Institute, Coastal Oceans Institute, Stanley Watson Chair for Excellence in Oceanography and the Academic Programs Office), and by the ETH Zurich.
    Keywords: Monsoons ; Paleoclimatology ; Holocene ; Pelagia (Ship) Cruise 64PE300
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 121 (2016): 1316–1338, doi:10.1002/2016JG003323.
    Description: While lignin geochemistry has been extensively investigated in the Amazon River, little is known about lignin distribution and dynamics within deep, stratified river channels or its transformations within soils prior to delivery to rivers. We characterized lignin phenols in soils, river particulate organic matter (POM), and dissolved organic matter (DOM) across a 4 km elevation gradient in the Madre de Dios River system, Peru, as well as in marine sediments to investigate the source-to-sink evolution of lignin. In soils, we found more oxidized lignin in organic horizons relative to mineral horizons. The oxidized lignin signature was maintained during transfer into rivers, and lignin was a relatively constant fraction of bulk organic carbon in soils and riverine POM. Lignin in DOM became increasingly oxidized downstream, indicating active transformation of dissolved lignin during transport, especially in the dry season. In contrast, POM accumulated undegraded lignin downstream during the wet season, suggesting that terrestrial input exceeded in-river degradation. We discovered high concentrations of relatively undegraded lignin in POM at depth in the lower Madre de Dios River in both seasons, revealing a woody undercurrent for its transfer within these deep rivers. Our study of lignin evolution in the soil-river-ocean continuum highlights important seasonal and depth variations of river carbon components and their connection to soil carbon pools, providing new insights into fluvial carbon dynamics associated with the transfer of lignin biomarkers from source to sink.
    Description: U.S. National Science Foundation Grant Number: 1227192; National Program on Key Basic Research Project Grant Number: 2015CB954201; National Natural Science Foundation of China Grant Number: 41422304; Natural Environment Research Council NE/F002149/1 Grant Number: FT110100457; European Union Marie Curie Fellowship Grant Number: FP7-2012-329360; NSF Grant Number: OCE-0934073
    Description: 2016-11-21
    Keywords: Lignin phenols ; Dissolved organic matter (DOM) ; Particulate organic matter (POM) ; Andes ; Amazon ; Depth profile
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 13 (2012): Q01008, doi:10.1029/2011GC003845.
    Description: We present a multiproxy geochemical analysis of two cores recovered from the Indus Shelf spanning the Early Holocene to Recent (〈14 ka). Indus-23 is located close to the modern Indus River, while Indus-10 is positioned ∼100 km further west. The Holocene transgression at Indus-10 was over a surface that was strongly weathered during the last glacial sea level lowstand. Lower Holocene sediments at Indus-10 have higher εNd values compared to those at the river mouth indicating some sediment supply from the Makran coast, either during the deposition or via reworking of older sediments outcropping on the shelf. Sediment transport from Makran occurred during transgressive intervals when sea level crossed the mid shelf. The sediment flux from non-Indus sources to Indus-10 peaked between 11 ka and 8 ka. A hiatus at Indus-23 from 8 ka until 1.3 ka indicates non-deposition or erosion of existing Indus Shelf sequences. Higher εNd values seen on the shelf compared to the delta imply reworking of older delta sediments in building Holocene clinoforms. Chemical Index of Alteration (CIA), Mg/Al and Sr isotopes are all affected by erosion of detrital carbonate, which reduced through the Holocene. K/Al data suggest that silicate weathering peaked ca. 4–6 ka and was higher at Indus-10 compared to Indus-23. Fine-grained sediments that make up the shelf have geochemical signatures that are different from the coarser grained bulk sediments measured in the delta plain. The Indus Shelf data highlight the complexity of reconstructing records of continental erosion and provenance in marine settings.
    Description: We thank NERC for funding this cruise and postcruise study. Award NSF-OCE 0623766 to LG also funded CP’s participation to the cruise and postcruise studies.
    Description: 2012-07-14
    Keywords: Arabian Sea ; Holocene paleoclimate ; Indus ; Geochemistry ; Neodymium and strontium isotopes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...