GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Keywords: Forschungsbericht ; Manganknollen
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (48 Seiten, 832 KB) , Illustrationen, Diagramme
    Language: German
    Note: Förderkennzeichen BMBF 03G0205A-D , Autoren dem Berichtsblatt entnommen , Paralleltitel dem englischen Berichtsblatt entnommen , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Mit deutscher und englischer Zusammenfassung
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, 249(2008), 3/4, Seite 206-225, 1872-6151
    In: volume:249
    In: year:2008
    In: number:3/4
    In: pages:206-225
    Description / Table of Contents: Three pockmarks named "Hydrate Hole", "Black Hole", and"Worm Hole" were studied in the northern Congo Fan area at water depths around 3100 m. The cross-disciplinary investigations include seafloor observations by TV-sled, sampling by TV-guided grab and multicorer as well as gravity coring, in addition to hydroacoustic mapping by a swath system, a parametric sediment echosounder and a deep-towed sidescan sonar. The pockmarks are morphologically complex features consisting of one or more up to 1000 m wide and 10-15 m deep depressions revealed by swath-mapping. High reflection amplitudes in the sediment echosounder records indicate the presence of a 2530 m thick shallow sediment section with gas hydrates, which have been recovered by gravity corer. Hydrates, chemosynthetic communities, and authigenic carbonates clearly indicate fluid flow from depths, which we propose to be mainly in the form of ascending gas bubbles rather than advection of methane-rich porewater. Evidence for seepage at the seafloor is confined to small areas within the seafloor depressions and was revealed by characteristic backscatter facies. Small meter-scale sized depressions signified as pitsʺ exist in or close to the pockmarks but seafloor observations did not reveal evidence for the presence of typical seep organisms or authigenic carbonates. Areas of intermediate backscatter were inhabited by vesicomyid clams in soft sediments. High backscatter was associated with vestimentiferan tubeworms (Siboglinidae) and authigenic carbonates. We discuss the three different environments "pits","vesicomyid clams", "vestimentifera/carbonate" in the light of differences in the geochemical setting. Pits are probably formed by escaping gas bubbles but seepage is too transient to sustain chemosynthetic life. Vesicomyid clams are present in sediments with gas hydrate deposits. However, the hydrates occur several meters below the surface indicating a lower flux compared to the vestimentifera/carbonate environment. In the latter environment, accumulated carbonates and clam shells indicate that fine grained particles have been eroded away. Gas hydrates were found in this environment at depths below about 50 cm suggesting the highest supply with methane compared to the other environments.
    Type of Medium: Online Resource
    ISSN: 1872-6151
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, 266(2009), 1/4, Seite 198-211, 1872-6151
    In: volume:266
    In: year:2009
    In: number:1/4
    In: pages:198-211
    Description / Table of Contents: In this study we present a late Miocene-early Pliocene record of sixty-four zones with prominent losses in the magnetic susceptibility signal, taken on a sediment drift (ODP Site 1095) on the Pacific continental rise of the West Antarctic Peninsula. The zones are comparable in shape and magnitude and occur commonly at glacial-to-interglacial transitions. High resolution records of organic matter, magnetic susceptibility and clay mineral composition from early Pliocene intervals demonstrate that neither dilution effects nor provenance changes of the sediments have caused the magnetic susceptibility losses. Instead, reductive dissolution of magnetite under suboxic conditions seems to be the most likely explanation. We propose that during the deglaciation exceptionally high organic fluxes in combination with weak bottom water currents and prominent sediment draping diatom ooze layers produced temporary suboxic conditions in the uppermost sediments. It is remarkable that synsedimentary suboxic conditions can be observed in one of the best ventilated open ocean regions of the World.
    Type of Medium: Online Resource
    Pages: Ill., graph. Darst
    ISSN: 1872-6151
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Forschungsbericht
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (29 Seiten, 5,19 MB) , Diagramme, Karten
    Language: German
    Note: Förderkennzeichen BMBF 03G0240C (JUB) - 03G0240D (AWI). - Verbund-Nummer 01158661 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-02-08
    Description: Increasing interest in deep-sea mineral resources, such as polymetallic nodules, calls for environmental research about possible impacts of mineral exploitation on the deep-sea ecosystem. So far, little geochemical comparisons of deep-sea sediments before and after mining induced disturbances have been made, and thus long-term environmental effects of deep-sea mining are unknown. Here we present geochemical data from sediment cores from an experimental disturbance area at 4,100 m water depth in the Peru Basin. The site was revisited in 2015, 26 years after a disturbance experiment mimicking nodule mining was carried out and compared to sites outside the experimental zone which served as a pre-disturbance reference. We investigated if signs of the disturbance are still visible in the solid phase and the pore water after 26 years or if pre-disturbance conditions have been re-established. Additionally, a new disturbance was created during the cruise and sampled 5 weeks later to compare short- and longer-term impacts. The particulate fraction and pore water were analyzed for major and trace elements to study element distribution and processes in the surface sediment. Pore water and bottom water samples were also analyzed for oxygen, nitrate, dissolved organic carbon, and dissolved amino acids, to examine organic matter degradation processes. The study area of about 11 km2 was found to be naturally more heterogeneous than expected, requiring an analysis of spatial variability before the disturbed and undisturbed sites can be compared. The disturbed sites exhibit various disturbance features: some surface sediments were mixed through, others had the top layer removed and some had additional material deposited on top. Pore water constituents have largely regained pre-disturbance gradients after 26 years. The solid phase, however, shows clear differences between disturbed and undisturbed sites in the top 20 cm so that the impact is still visible in the plowed tracks after 26 years. Especially the upper layer, usually rich in manganese-oxide and associated metals, such as Mo, Ni, Co, and Cu, shows substantial differences in metal distribution. Hence, it can be expected that disturbances from polymetallic nodule mining will have manifold and long-lasting impacts on the geochemistry of the underlying sediment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-08
    Description: The manganese nodule belt within the Clarion and Clipperton Fracture Zones (CCZ) in the abyssal NE Pacific Ocean is characterized by numerous seamounts, low organic matter (OM) depositional fluxes and meter-scale oxygen penetration depths (OPD) into the sediment. The region hosts contract areas for the exploration of polymetallic nodules and Areas of Particular Environmental Interest (APEI) as protected areas. In order to assess the impact of potential mining on these deep-sea sediments and ecosystems, a thorough determination of the natural spatial variability of depositional and geochemical conditions as well as biogeochemical processes and element fluxes in the different exploration areas is required. Here, we present a comparative study on (1) sedimentation rates and bioturbation depths, (2) redox zonation of the sediments and element fluxes as well as (3) rates and pathways of biogeochemical reactions at six sites in the eastern CCZ. The sites are located in four European contract areas and in the APEI3. Our results demonstrate that the natural spatial variability of depositional and (bio)geochemical conditions in this deep-sea sedimentary environment is much larger than previously thought. We found that the OPD varies between 1 and 4.5 m, while the sediments at two sites are oxic throughout the sampled interval (7.5 m depth). Below the OPD, manganese and nitrate reduction occur concurrently in the suboxic zone with pore-water Mn2+ concentrations of up to 25 µM. The thickness of the suboxic zone extends over depth intervals of less than 3 m to more than 8 m. Our data and the applied transport-reaction model suggest that the extension of the oxic and suboxic zones is ultimately determined by the (1) low flux of particulate organic carbon (POC) of 1–2 mg Corg m−2 d−1 to the seafloor, (2) low sedimentation rates between 0.2 and 1.15 cm kyr−1 and (3) oxidation of pore-water Mn2+ at depth. The diagenetic model reveals that aerobic respiration is the main biogeochemical process driving OM degradation. Due to very low POC fluxes of 1 mg Corg m−2 d−1 to the seafloor at the site investigated in the protected APEI3 area, respiration rates are twofold lower than at the other study sites. Thus, the APEI3 site does not represent the (bio)geochemical conditions that prevail in the other investigated sites located in the European contract areas. Lateral variations in surface water productivity are generally reflected in the POC fluxes to the seafloor across the various areas but deviate from this trend at two of the study sites. We suggest that the observed spatial variations in depositional and (bio)geochemical conditions result from differences in the degree of degradation of OM in the water column and heterogeneous sedimentation patterns caused by the interaction of bottom water currents with seafloor topography.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Wiley / Society for Applied Microbiology and Blackwell Publishing Ltd,
    In:  Environmental Microbiology, 10 (8). pp. 1934-1947.
    Publication Date: 2017-06-27
    Description: A novel microbially diverse type of 1- to 5-cm-thick mat performing anaerobic oxidation of methane (AOM) and covering several square metres of the seafloor was discovered in the Black Sea at 180 m water depth. Contrary to other AOM-mat systems of the Black Sea these floating mats are not associated to free gas and are not stabilized by authigenic carbonates. However, supply of methane is ensured by the horizontal orientation of the mats acting as a cover of methane enriched fluids ascending from the underlying sediments. Thorough investigation of their community composition by molecular microbiology and lipid biomarkers, metabolic activities and elemental composition showed that the mats provide a clearly structured system with extracellular polymeric substances (EPS) building the framework of the mats. The top black zone, showing high rates of AOM (15 μmol gdw−1 day−1), was dominated by ANME-2, while the following equally active pink layer was dominated by ANME-1 Archaea. The lowest AOM activity (2 μmol gdw−1 day−1) and cell numbers were found in the greyish middle part delimited towards the sediment by a second pink, ANME-1-dominated and sometimes a black outer layer (ANME-2). Our work clearly shows that the different microbial populations are established along defined chemical gradients such as methane, sulfate or sulfide.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-06
    Description: The interplay between sediment deposition patterns, organic matter type and the quantity and quality of reactive mineral phases determines the accumulation, speciation, and isotope composition of pore water and solid phase sulfur constituents in marine sediments. Here, we present the sulfur geochemistry of siliciclastic sediments from two sites along the Argentine continental slope—a system characterized by dynamic deposition and reworking, which result in non-steady state conditions. The two investigated sites have different depositional histories but have in common that reactive iron phases are abundant and that organic matter is refractory—conditions that result in low organoclastic sulfate reduction rates (SRR). Deposition of reworked, isotopically light pyrite and sulfurized organic matter appear to be important contributors to the sulfur inventory, with only minor addition of pyrite from organoclastic sulfate reduction above the sulfate-methane transition (SMT). Pore-water sulfide is limited to a narrow zone at the SMT. The core of that zone is dominated by pyrite accumulation. Iron monosulfide and elemental sulfur accumulate above and below this zone. Iron monosulfide precipitation is driven by the reaction of low amounts of hydrogen sulfide with ferrous iron and is in competition with the oxidation of sulfide by iron (oxyhydr)oxides to form elemental sulfur. The intervals marked by precipitation of intermediate sulfur phases at the margin of the zone with free sulfide are bordered by two distinct peaks in total organic sulfur (TOS). Organic matter sulfurization appears to precede pyrite formation in the iron-dominated margins of the sulfide zone, potentially linked to the presence of polysulfides formed by reaction between dissolved sulfide and elemental sulfur. Thus, SMTs can be hotspots for organic matter sulfurization in sulfide-limited, reactive iron-rich marine sedimentary systems. Furthermore, existence of elemental sulfur and iron monosulfide phases meters below the SMT demonstrates that in sulfide-limited systems metastable sulfur constituents are not readily converted to pyrite but can be buried to deeper sediment depths. Our data show that in non-steady state systems, redox zones do not occur in sequence but can reappear or proceed in inverse sequence throughout the sediment column, causing similar mineral alteration processes to occur at the same time at different sediment depths.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-05-19
    Description: The geochemical cycling of barium was investigated in sediments of pockmarks of the northern Congo Fan, characterized by surface and subsurface gas hydrates, chemosynthetic fauna, and authigenic carbonates. Two gravity cores retrieved from the so-called Hydrate Hole and Worm Hole pockmarks were examined using high-resolution pore-water and solid-phase analyses. The results indicate that, although gas hydrates in the study area are stable with respect to pressure and temperature, they are and have been subject to dissolution due to methane-undersaturated pore waters. The process significantly driving dissolution is the anaerobic oxidation of methane (AOM) above the shallowest hydrate-bearing sediment layer. It is suggested that episodic seep events temporarily increase the upward flux of methane, and induce hydrate formation close to the sediment surface. AOM establishes at a sediment depth where the upward flux of methane from the uppermost hydrate layer counterbalances the downward flux of seawater sulfate. After seepage ceases, AOM continues to consume methane at the sulfate/methane transition (SMT) above the hydrates, thereby driving the progressive dissolution of the hydrates “from above”. As a result the SMT migrates downward, leaving behind enrichments of authigenic barite and carbonates that typically precipitate at this biogeochemical reaction front. Calculation of the time needed to produce the observed solid-phase barium enrichments above the present-day depths of the SMT served to track the net downward migration of the SMT and to estimate the total time of hydrate dissolution in the recovered sediments. Methane fluxes were higher, and the SMT was located closer to the sediment surface in the past at both sites. Active seepage and hydrate formation are inferred to have occurred only a few thousands of years ago at the Hydrate Hole site. By contrast, AOM-driven hydrate dissolution as a consequence of an overall net decrease in upward methane flux seems to have persisted for a considerably longer time at the Worm Hole site, amounting to a few tens of thousands of years.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-23
    Description: The Cretaceous period (similar to 145-65 m.y. ago) was characterized by intervals of enhanced organic carbon burial associated with increased primary production under greenhouse conditions. The global consequences of these perturbations, oceanic anoxic events (OAEs), lasted up to 1 m.y., but short-term nutrient and climatic controls on widespread anoxia are poorly understood. Here, we present a high-resolution reconstruction of oceanic redox and nutrient cycling as recorded in subtropical shelf sediments from Tarfaya, Morocco, spanning the initiation of OAE2. Iron-sulfur systematics and biomarker evidence demonstrate previously undescribed redox cyclicity on orbital time scales, from sulfidic to anoxic ferruginous (Fe-rich) water-column conditions. Bulk geochemical data and sulfur isotope modeling suggest that ferruginous conditions were not a consequence of nutrient or sulfate limitation, despite overall low sulfate concentrations in the proto-North Atlantic. Instead, fluctuations in the weathering influxes of sulfur and reactive iron, linked to a dynamic hydrological cycle, likely drove the redox cyclicity. Despite the potential for elevated phosphorus burial in association with Fe oxides under ferruginous conditions on the Tarfaya shelf, porewater sulfide generation drove extensive phosphorus recycling back to the water column, thus maintaining widespread open-ocean anoxia.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...