GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AWI_Paleo; Center for Marine Environmental Sciences; MARUM; Paleoenvironmental Reconstructions from Marine Sediments @ AWI  (2)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Oni, Oluwatobi Emmanuel; Schmidt, Frauke; Miyatake, Tetsuro; Kasten, Sabine; Witt, Matthias; Hinrichs, Kai-Uwe; Friedrich, Michael W (2015): Microbial communities and organic matter composition in surface and subsurface sediments of the Helgoland mud area, North Sea. Frontiers in Microbiology, 6, https://doi.org/10.3389/fmicb.2015.01290
    Publication Date: 2023-03-16
    Description: The role of microorganisms in the cycling of sedimentary organic carbon is a crucial one. To better understand relationships between molecular composition of a potentially bioavailable fraction of organic matter and microbial populations, bacterial and archaeal communities were characterized using pyrosequencing-based 16S rRNA gene analysis in surface (top 30 cm) and subsurface/deeper sediments (30-530 cm) of the Helgoland mud area, North Sea. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) was used to characterize a potentially bioavailable organic matter fraction (hot-water extractable organic matter, WE-OM). Algal polymer-associated microbial populations such as members of the Gammaproteobacteria, Bacteroidetes, and Verrucomicrobia were dominant in surface sediments while members of the Chloroflexi (Dehalococcoidales and candidate order GIF9) and Miscellaneous Crenarchaeota Groups (MCG), both of which are linked to degradation of more recalcitrant, aromatic compounds and detrital proteins, were dominant in subsurface sediments. Microbial populations dominant in subsurface sediments (Chloroflexi, members of MCG, and Thermoplasmata) showed strong correlations to total organic carbon (TOC) content. Changes of WE-OM with sediment depth reveal molecular transformations from oxygen-rich [high oxygen to carbon (O/C), low hydrogen to carbon (H/C) ratios] aromatic compounds and highly unsaturated compounds toward compounds with lower O/C and higher H/C ratios. The observed molecular changes were most pronounced in organic compounds containing only CHO atoms. Our data thus, highlights classes of sedimentary organic compounds that may serve as microbial energy sources in methanic marine subsurface environments.
    Keywords: AWI_Paleo; Center for Marine Environmental Sciences; MARUM; Paleoenvironmental Reconstructions from Marine Sediments @ AWI
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Römer, Miriam; Torres, Marta E; Kasten, Sabine; Kuhn, Gerhard; Graham, Alastair G C; Mau, Susan; Little, Crispin T S; Linse, Katrin; Pape, Thomas; Geprägs, Patrizia; Fischer, David; Wintersteller, Paul; Marcon, Yann; Rethemeyer, Janet; Bohrmann, Gerhard; Shipboard scientific party ANT-XXIX/4 (2014): First evidence of widespread active methane seepage in the Southern Ocean, off the sub-Antarctic island of South Georgia. Earth and Planetary Science Letters, 403, 166-177, https://doi.org/10.1016/j.epsl.2014.06.036
    Publication Date: 2023-03-16
    Description: An extensive submarine cold-seep area was discovered on the northern shelf of South Georgia during R/V Polarstern cruise ANT-XXIX/4 in spring 2013. Hydroacoustic surveys documented the presence of 133 gas bubble emissions, which were restricted to glacially-formed fjords and troughs. Video-based sea floor observations confirmed the sea floor origin of the gas emissions and spatially related microbial mats. Effective methane transport from these emissions into the hydrosphere was proven by relative enrichments of dissolved methane in near-bottom waters. Stable carbon isotopic signatures pointed to a predominant microbial methane formation, presumably based on high organic matter sedimentation in this region. Although known from many continental margins in the world's oceans, this is the first report of an active area of methane seepage in the Southern Ocean. Our finding of substantial methane emission related to a trough and fjord system, a topographical setting that exists commonly in glacially-affected areas, opens up the possibility that methane seepage is a more widespread phenomenon in polar and sub-polar regions than previously thought.
    Keywords: AWI_Paleo; Center for Marine Environmental Sciences; MARUM; Paleoenvironmental Reconstructions from Marine Sediments @ AWI
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...