GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-04-09
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-30
    Description: Rare earth elements and yttrium (REY) are often used as proxies to describe past enviromental conditions or to track element sources. Calcium phosphates are commonly used as archives for REY, but our study of the upper 10 m of deep-sea sediments from the equatorial Pacific, where REY are controlled by Ca phosphates, show that the shale-normalized (SN) REY patterns are heavily impacted by early diagenesis. The Ca phosphates incorporate REY from ambient pore waters without major fractionation, and thus, their REYSN patterns are similar to the pore-water REYSN pattern [1]. Our data from the Clarion Clipperton Zone (CCZ) and from the Peru Basin reveal such incorporation of pore-water REY into the Ca phosphates over long geographical distances and over a rather wide range of oxic to suboxic pore-water conditions. The pore-water REYSN patterns from the Peru Basin show similar features as seawater (e.g., heavy REY enrichment, negative CeSN and positive YSN anomalies), whereas the pore-water REYSN patterns from the CCZ display middle REY enrichment, the development of a negative CeSN-anomaly with depth, and either no or a slightly negative YSN-anomaly [1]. The differing pore-water REYSN patterns are possibly due to different REY sources to the pore water. These results cast doubt on the approach of using marine Ca phosphates as archives for the REY distribution or the Nd isotope composition of seawater, because the REY are derived from pore water and the Ca phosphates therefore do not preserve a primary seawater REY signal.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Geochimica et Cosmochimica Acta, PERGAMON-ELSEVIER SCIENCE LTD, ISSN: 0016-7037
    Publication Date: 2019-03-04
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-08
    Description: Increasing interest in deep-sea mineral resources, such as polymetallic nodules, calls for environmental research about possible impacts of mineral exploitation on the deep-sea ecosystem. So far, little geochemical comparisons of deep-sea sediments before and after mining induced disturbances have been made, and thus long-term environmental effects of deep-sea mining are unknown. Here we present geochemical data from sediment cores from an experimental disturbance area at 4,100 m water depth in the Peru Basin. The site was revisited in 2015, 26 years after a disturbance experiment mimicking nodule mining was carried out and compared to sites outside the experimental zone which served as a pre-disturbance reference. We investigated if signs of the disturbance are still visible in the solid phase and the pore water after 26 years or if pre-disturbance conditions have been re-established. Additionally, a new disturbance was created during the cruise and sampled 5 weeks later to compare short- and longer-term impacts. The particulate fraction and pore water were analyzed for major and trace elements to study element distribution and processes in the surface sediment. Pore water and bottom water samples were also analyzed for oxygen, nitrate, dissolved organic carbon, and dissolved amino acids, to examine organic matter degradation processes. The study area of about 11 km2 was found to be naturally more heterogeneous than expected, requiring an analysis of spatial variability before the disturbed and undisturbed sites can be compared. The disturbed sites exhibit various disturbance features: some surface sediments were mixed through, others had the top layer removed and some had additional material deposited on top. Pore water constituents have largely regained pre-disturbance gradients after 26 years. The solid phase, however, shows clear differences between disturbed and undisturbed sites in the top 20 cm so that the impact is still visible in the plowed tracks after 26 years. Especially the upper layer, usually rich in manganese-oxide and associated metals, such as Mo, Ni, Co, and Cu, shows substantial differences in metal distribution. Hence, it can be expected that disturbances from polymetallic nodule mining will have manifold and long-lasting impacts on the geochemistry of the underlying sediment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-31
    Description: Due to its remoteness, the deep-sea floor remains an understudied ecosystem of our planet. The patchiness of existing data sets makes it difficult to draw conclusions about processes that apply to a wider area. In our study we show how different settings and processes determine sediment heterogeneity on small spatial scales. We sampled solid phase and porewater from the upper 10 m of an approximately 7.4×13 km2 area in the Peru Basin, in the southeastern equatorial Pacific Ocean, at 4100 m water depth. Samples were analyzed for trace metals, including rare earth elements and yttrium (REY), as well as for particulate organic carbon (POC), CaCO3, and nitrate. The analyses revealed the surprisingly high spatial small-scale heterogeneity of the deep-sea sediment composition. While some cores have the typical green layer from Fe(II) in the clay minerals, this layer is missing in other cores, i.e., showing a tan color associated with more Fe(III) in the clay minerals. This is due to varying organic carbon contents: nitrate is depleted at 2–3 m depth in cores with higher total organic carbon contents but is present throughout cores with lower POC contents, thus inhibiting the Fe(III)-to-Fe(II) reduction pathway in organic matter degradation. REY show shale-normalized (SN) patterns similar to seawater, with a relative enrichment of heavy REY over light REY, positive LaSN anomaly, negative CeSN anomaly, and positive YSN anomaly and correlate with the Fe-rich clay layer and, in some cores, also correlate with P. We therefore propose that Fe-rich clay minerals, such as nontronite, as well as phosphates, are the REY-controlling phases in these sediments. Variability is also seen in dissolved Mn and Co concentrations between sites and within cores, which might be due to dissolving nodules in the suboxic sediment, as well as in concentration peaks of U, Mo, As, V, and Cu in two cores, which might be related to deposition of different material at lower-lying areas or precipitation due to shifting redox boundaries.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Highlights • Amazon shelf sediments take up seawater potassium (K) due to reverse weathering. • Amazon shelf sediments release terrigenous phosphorus (P) during resuspension. • Updated estimates of sedimentary K uptake and P release on Amazon shelf are presented. • Sedimentary K uptake on Amazon shelf corresponds to 13% of global riverine K input. • Sedimentary P release is ~5 times higher than dissolved P discharge of Amazon River. Abstract In this study, we identify and quantify processes that lead to sedimentary potassium (K) sequestration and phosphorus (P) release on the Amazon shelf. To this end, seven short sediment cores were recovered from the Amazon shelf during R/V Meteor cruise M147. All of the sediment cores investigated in this study are characterized by elevated K to aluminum (Al) ratios compared to Amazon riverine suspended matter, which indicates that seawater K+ is incorporated into the solid phase on the entire Amazon shelf. Pore water silica (Si) profiles are characterized by irregularly increasing concentrations and plateaus, thus, deviating from the asymptotic shape that is typically found in continental margin sediments. At one site, a dissolved Si plateau coincides with a K+ minimum suggesting that these solutes are incorporated into authigenic minerals, a process referred to as reverse weathering. Previous flux estimates for elements that participate in reverse weathering on the Amazon shelf were derived from pore water diffusive fluxes, reaction rates estimated from sediment incubations and solid phase extractions. In this study, we took an alternative approach, which is based on the concentration difference between shelf sediments and river suspended particles. The resulting K flux due to reverse weathering of 1.7 ∙ 1011 mol yr−1 is in agreement with previous estimates and corresponds to 13% of the global riverine dissolved K+ input. Previous studies demonstrated that Amazon riverine particulate P is partly solubilized on the Amazon shelf. However, these results are exclusively based on sediment data close to the river mouth and no distinction between terrestrial and marine sediment components was made. Here, we quantify P release from Amazon shelf sediments by comparing terrestrial P concentrations in shelf sediments with P concentrations in river suspended particles. The resulting solubilized P flux of 2.2 ∙ 1010 mol yr−1 is about five to six times higher than previous estimates and about seven times the Amazon riverine dissolved P discharge. The magnitudes of the presented fluxes imply that the alteration of riverine shelf sediments significantly affects the mean concentrations of dissolved K+ and P in the global ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: The release of potentially toxic metals, such as copper (Cu), into the water column is of concern during polymetallic nodule mining. The bioavailability and thus toxicity of Cu is strongly influenced by its speciation which is dominated by organic ligand (L) complexation in seawater, with L-complexes being considered less bioavailable than free Cu 2+ . The presence of CuL-complexes in deep-sea sediments has, however, not been systematically studied in the context of deep-sea mining. We thus analyzed the Cu-binding L concentration ([L]) in deep-sea pore waters of two polymetallic nodule provinces in the Pacific Ocean, the Peru Basin and the Clarion-Clipperton-Zone, using competitive ligand equilibration–adsorptive stripping voltammetry. The pore-water dissolved Cu concentration ([dCu]) ranged from 3 to 96 nM, generally exceeding bottom water concentrations (4–44 nM). Based on fitting results from ProMCC and Excel, Cu was predominantly complexed by L (3–313 nM) in bottom waters and undisturbed pore waters. We conclude that processes like deep-sea mining are unlikely to cause a release of toxic Cu 2+ concentrations ([Cu 2+ ]) to the seawater as 〉 99% Cu was organically complexed in pore waters and the [Cu 2+ ] was 〈 6 pM for 8 of 9 samples. Moreover, the excess of L found especially in shallow pore waters implied that even with a Cu release through mining activities, Cu 2+ likely remains beneath toxic thresholds.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Highlights • First successful in situ DGT application in the deep ocean. • DGT-lability of dissolved (〈0.2 μm) Cu, Ni, Cd, Mn, As, V, REY differs depending on chemical speciation. • REY in deep ocean water can be almost quantitatively assessed with DGT. • Low Cu availability reflects dominating organic speciation. Abstract Geochemical behaviour and bio-availability of trace metals are closely related to their physical fractionation and chemical speciation. The DGT speciation technique allows the challenging assessment of labile concentrations of Mn, Cd, Cu, Ni, V, As, and REY in ocean waters. In this first deep-water in situ study of DGT-lability, we demonstrate the approach in bottom waters of the Clarion-Clipperton Zone in the central NE Pacific. In the dissolved fraction (〈0.2 μm), 70% to 100% of Cd, Ni, V, and REY, but only 25% of Cu and less than 50% of As were determined, reflecting their prevailing dominance of organic vs. inorganic complexation. This study demonstrates the applicability and sensitivity of DGT-passive samplers for trace metals as a suitable technique in monitoring of anthropogenic activities, such as deep seabed mining, as well as for natural process studies in abyssal environments.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-03-15
    Description: Detailed geochemical and mineralogical insights into some of the richest rare earth elements and yttrium (REY)-containing bioapatites from ocean-floor sediments have been provided by combining laser ablation inductively coupled plasma diffraction analysis, and Ce L3-edge high energy-resolution X-ray absorption near edge structure (HR-XANES) spectroscopy. Bioapatites at 1.94 and 4.70 m below the seafloor (mbsf) of the Clarion-Clipperton Zone (CCZ) of the Pacific Ocean have 26,600 (RSD = 15.7%, n = 20) and 30,300 (RSD = 14.6%, n = 10) mg/kg (mg/kg) total REY, respectively, and bioapatites at 2.28 and 6.95 mbsf of the Peru Basin have 15,500 (RSD = 15.6%, n = 20) and 15,700 (RSD = 17.8%, n = 29) mg/kg total REY, respectively. All bioapatite specimens have a variety of isomorphic substitutions in all atomic positions of the crystallographic structure. The average crystallochemical formula of bioapatites at 6.95 mbsf of the Peru Basin is [(PO4)2.71(SiO4)0.04(CO3,SO4)0.25][Ca4.57Na0.29Y0.04][F0.87Cl0.21]. All other substituents are below 0.04 atoms per formula unit. HR-XANES provides the first direct evidence for trivalent Ce in sediment apatites. The strong negative geochemical anomaly of Ce in fossil bioapatites is well explained by the occurrence of four valent Ce-MnO2 and CeO2 within the sediment and in seafloor ferromanganese nodules.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-03-15
    Description: The Amazon and the Pará are two major rivers that carry dissolved and suspended particulate trace metals to the Atlantic Ocean. In the dynamic mixing zone of the estuary, competing processes of trace metal sorption and release play a role, which might affect transport to the open ocean. Here we investigate the behavior of dissolved (〈0.2 μm), soluble (〈0.015 μm) and truly dissolved (〈10 kDa and 〈 1 kDa) molybdenum (Mo), uranium (U), and vanadium (V) during estuarine mixing between river water (S 〈 1) and seawater (S 〉 35) end members during the high discharge period, as well as during aging of the plume in its northward flow along the coast. Molybdenum behaved conservatively during estuarine mixing and showed no colloidal fraction, suggesting Mo is solely present in the soluble or even truly dissolved fraction. Uranium behaved mostly conservatively but showed removal in the low salinity range (ca. S 〈 9). This is potentially due to colloidal flocculation at low salinities, as indicated by colloidal (0.015–0.2 μm) fractions of up to 30% for U but decreasing with increasing salinity until no significant difference could be discerned at S 〉 10. Vanadium shows a general conservative mixing, but with more scatter in the data than for Mo and U and potential removal at low to mid-salinities. Removal of V to the sediments is also indicated by surface sediment data from the mid-salinity region of the estuary but no size fractionation in the dissolved phase could be observed. Hence, V seems to be predominantly present in the soluble or even truly dissolved phase and export to the sediments might take place through particles 〉0.2 μm. No considerable removal or release of Mo, U and V was observed in their water column depth profiles, indicating a conservative behavior in the water column of the estuaries studied here. Additionally, we present a comparison of differential pulse adsorptive stripping voltammetry and inductively coupled plasma – mass spectrometry analyses for Mo and V, which showed excellent agreement within analytical uncertainty in this challenging sample material covering the full salinity range from freshwater to seawater.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...