GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    Publication Date: 2020-02-06
    Description: The interplay between sediment deposition patterns, organic matter type and the quantity and quality of reactive mineral phases determines the accumulation, speciation, and isotope composition of pore water and solid phase sulfur constituents in marine sediments. Here, we present the sulfur geochemistry of siliciclastic sediments from two sites along the Argentine continental slope—a system characterized by dynamic deposition and reworking, which result in non-steady state conditions. The two investigated sites have different depositional histories but have in common that reactive iron phases are abundant and that organic matter is refractory—conditions that result in low organoclastic sulfate reduction rates (SRR). Deposition of reworked, isotopically light pyrite and sulfurized organic matter appear to be important contributors to the sulfur inventory, with only minor addition of pyrite from organoclastic sulfate reduction above the sulfate-methane transition (SMT). Pore-water sulfide is limited to a narrow zone at the SMT. The core of that zone is dominated by pyrite accumulation. Iron monosulfide and elemental sulfur accumulate above and below this zone. Iron monosulfide precipitation is driven by the reaction of low amounts of hydrogen sulfide with ferrous iron and is in competition with the oxidation of sulfide by iron (oxyhydr)oxides to form elemental sulfur. The intervals marked by precipitation of intermediate sulfur phases at the margin of the zone with free sulfide are bordered by two distinct peaks in total organic sulfur (TOS). Organic matter sulfurization appears to precede pyrite formation in the iron-dominated margins of the sulfide zone, potentially linked to the presence of polysulfides formed by reaction between dissolved sulfide and elemental sulfur. Thus, SMTs can be hotspots for organic matter sulfurization in sulfide-limited, reactive iron-rich marine sedimentary systems. Furthermore, existence of elemental sulfur and iron monosulfide phases meters below the SMT demonstrates that in sulfide-limited systems metastable sulfur constituents are not readily converted to pyrite but can be buried to deeper sediment depths. Our data show that in non-steady state systems, redox zones do not occur in sequence but can reappear or proceed in inverse sequence throughout the sediment column, causing similar mineral alteration processes to occur at the same time at different sediment depths.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-03-06
    Description: Highlights • Naturally enriched AOM biomass was studied in high-pressure continuous incubation. • We report the first S- and O-isotope fractionation values by sulfate reduction coupled to AOM from culture studies. • There is a tight link between methane concentration and S- and O-isotope fractionation. • S- and O-isotope fractionation values indicate reversibility of energy limited microbial processes. • The wide range of environmental S- and O-isotope signatures can be explained. Abstract Isotope signatures of sulfur compounds are key tools for studying sulfur cycling in the modern environment and throughout earth's history. However, for meaningful interpretations, the isotope effects of the processes involved must be known. Sulfate reduction coupled to the anaerobic oxidation of methane (AOM-SR) plays a pivotal role in sedimentary sulfur cycling and is the main process responsible for the consumption of methane in marine sediments − thereby efficiently limiting the escape of this potent greenhouse gas from the seabed to the overlying water column and atmosphere. In contrast to classical dissimilatory sulfate reduction (DSR), where sulfur and oxygen isotope effects have been measured in culture studies and a wide range of isotope effects has been observed, the sulfur and oxygen isotope effects by AOM-SR are unknown. This gap in knowledge severely hampers the interpretation of sulfur cycling in methane-bearing sediments, especially because, unlike DSR which is carried out by a single organism, AOM-SR is presumably catalyzed by consortia of archaea and bacteria that both contribute to the reduction of sulfate to sulfide. We studied sulfur and oxygen isotope effects by AOM-SR at various aqueous methane concentrations from 1.4±0.6 mM1.4±0.6 mM up to 58.8±10.5 mM58.8±10.5 mM in continuous incubation at steady state. Changes in the concentration of methane induced strong changes in sulfur isotope enrichment (View the MathML sourceεS34) and oxygen isotope exchange between water and sulfate relative to sulfate reduction (θOθO), as well as sulfate reduction rates (SRR). Smallest View the MathML sourceεS34 (21.9±1.9‰21.9±1.9‰) and θOθO (0.5±0.20.5±0.2) as well as highest SRR were observed for the highest methane concentration, whereas highest View the MathML sourceεS34 (67.3±26.1‰67.3±26.1‰) and θOθO (2.5±1.52.5±1.5) and lowest SRR were reached at low methane concentration. Our results show that View the MathML sourceεS34, θOθO and SRR during AOM-SR are very sensitive to methane concentration and thus also correlate with energy yield. In sulfate–methane transition zones, AOM-SR is likely to induce very large sulfur isotope fractionation between sulfate and sulfide (i.e. 〉60‰〉60‰) and will drive the oxygen isotope composition of sulfate towards the sulfate–water oxygen isotope equilibrium value. Sulfur isotope fractionation by AOM-SR at gas seeps, where methane fluxes are high, will be much smaller (i.e. 20 to 40‰).
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-14
    Description: Glacial environments may provide an important but poorly constrained source of potentially bioavailable iron and manganese phases to the coastal ocean in high-latitude regions. Little is known about the fate and biogeochemical cycling of glacially derived iron and manganese in the coastal marine realm. Sediment and porewater samples were collected along transects from the fjord mouths to the tidewater glaciers at the fjord heads in Smeerenburgfjorden, Kongsfjorden, and Van Keulenfjorden along Western Svalbard. Solid-phase iron and manganese speciation, determined by sequential chemical extraction, could be linked to the compositions of the local bedrock and hydrological/weathering conditions below the local glaciers. The concentration and sulfur isotope composition of chromium reducible sulfur (CRS) in Kongs- and Van Keulenfjorden sediments largely reflect the delivery rate and isotope composition of detrital pyrite originating from adjacent glaciers. The varying input of reducible iron and manganese oxide phases and the input of organic matter of varying reactivity control the pathways of organic carbon mineralization in the sediments of the three fjords. High reducible iron and manganese oxide concentrations and elevated metal accumulation rates coupled to low input of “fresh” organic matter lead to a strong expression of dissimilatory metal oxide reduction evidenced in very high porewater iron (up to 800 lM) and manganese (up to 210 lM) concentrations in Kongsfjorden and Van Keulenfjorden. Sediment reworking by the benthic macrofauna and physical sediment resuspension via iceberg calving may be additional factors that promote extensive benthic iron and manganese cycling in these fjords. On-going benthic recycling of glacially derived dissolved iron into overlying seawater, where partial reoxidation and deposition occurs, facilitates the transport of iron across the fjords and potentially into adjacent continental shelf waters. Such iron-dominated fjord sediments are likely to provide significant fluxes of potentially bioavailable iron to coastal waters and beyond. By contrast, low delivery of reducible iron (oxyhydr)oxide phases and elevated organic carbon mineralization rates driven by elevated input of “fresh” marine organic matter allow organoclastic sulfate reduction to dominate carbon remineralization at the outer Smeerenburgfjorden sites, which may limit iron fluxes to the water column.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: Here, we present results from sediments collected in the Argentine Basin, a non-steady state depositional marine system characterized by abundant oxidized iron within methane-rich layers due to sediment reworking followed by rapid deposition. Our comprehensive inorganic data set shows that iron reduction in these sulfate and sulfide-depleted sediments is best explained by a microbially mediated process—implicating anaerobic oxidation of methane coupled to iron reduction (Fe-AOM) as the most likely major mechanism. Although important in many modern marine environments, iron-driven AOM may not consume similar amounts of methane compared with sulfate-dependent AOM. Nevertheless, it may have broad impact on the deep biosphere and dominate both iron and methane cycling in sulfate-lean marine settings. Fe-AOM might have been particularly relevant in the Archean ocean, 〉2.5 billion years ago, known for its production and accumulation of iron oxides (in iron formations) in a biosphere likely replete with methane but low in sulfate. Methane at that time was a critical greenhouse gas capable of sustaining a habitable climate under relatively low solar luminosity, and relationships to iron cycling may have impacted if not dominated methane loss from the biosphere.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-05-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Riedinger, Natascha; Brunner, Benjamin; Krastel, Sebastian; Arnold, Gail Lee; Wehrmann, Laura Mariana; Formolo, Michael J; Beck, Antje; Bates, Steven M; Henkel, Susann; Kasten, Sabine; Lyons, Timothy W (2017): Sulfur cycling in an iron oxide-dominated, dynamic marine depositional system: The Argentine continental margin. Frontiers in Earth Science, 5, https://doi.org/10.3389/feart.2017.00033
    Publication Date: 2023-03-03
    Description: The interplay between sediment deposition patterns, organic matter type and the quantity and quality of reactive mineral phases determines the accumulation, speciation and isotope composition of pore water and solid phase sulfur constituents in marine sediments. Here, we present the sulfur geochemistry of siliciclastic sediments from two sites along the Argentine continental slope--a system characterized by dynamic deposition and reworking, which result in non-steady state conditions. The two investigated sites have different depositional histories but have in common that reactive iron phases are abundant and that organic matter is refractory--conditions that result in low organoclastic sulfate reduction rates. Deposition of reworked, isotopically light pyrite and sulfurized organic matter appear to be important contributors to the sulfur inventory, with only minor addition of pyrite from organoclastic sulfate reduction above the sulfate-methane transition (SMT). Pore-water sulfide is limited to a narrow zone at the SMT. The core of that zone is dominated by pyrite accumulation. Iron monosulfide and elemental sulfur accumulate above and below this zone. Iron monosulfide precipitation is driven by the reaction of low amounts of hydrogen sulfide with ferrous iron and is in competition with the oxidation of sulfide by iron (oxyhydr)oxides to form elemental sulfur. The intervals marked by precipitation of intermediate sulfur phases at the margin of the zone with free sulfide are bordered by two distinct peaks in total organic sulfur. Organic matter sulfurization appears to precede pyrite formation in the iron-dominated margins of the sulfide zone, potentially linked to the presence of polysulfides formed by reaction between dissolved sulfide and elemental sulfur. Thus, SMTs can be hotspots for organic matter sulfurization in sulfide-limited, reactive iron-rich marine sedimentary systems. Furthermore, existence of elemental sulfur and iron monosulfide phases meters below the SMT demonstrates that in sulfide-limited systems metastable sulfur constituents are not readily converted to pyrite but can be buried to deeper sediment depths. Our data show that in non-steady state systems, redox zones do not occur in sequence but can reappear or proceed in inverse sequence throughout the sediment column, causing similar mineral alteration processes to occur at the same time at different sediment depths.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 12 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-02
    Keywords: 353; Alkalinity, total; DEPTH, sediment/rock; Gas chromatography; GC; GeoB13804-1; Gravity corer; Hydrogen sulfide; Iron 2+; M78/3A; Meteor (1986); Methane; Oxidation reduction (RedOx) potential; Phosphate; Photometer, methylene blue (Cline 1969); Punch-in electrode; Spectrophotometry; Sulfate; Sykam solvent delivery system coupled to a Waters 430 conductivity detector; Titration
    Type: Dataset
    Format: text/tab-separated-values, 114 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-02
    Keywords: 483; Density, wet bulk; DEPTH, sediment/rock; Fall cone penetration test; GC; GeoB13854-1; Gravity corer; M78/3B; Meteor (1986); Porosity, fractional; Shear strength, primary; Shear vane, hand-held
    Type: Dataset
    Format: text/tab-separated-values, 85 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-02
    Keywords: 498; Center for Marine Environmental Sciences; DEPTH, sediment/rock; Gas chromatography; GC; GeoB13863-1; Gravity corer; M78/3B; MARUM; Meteor (1986); Methane
    Type: Dataset
    Format: text/tab-separated-values, 5 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-02
    Keywords: 352; Density, wet bulk; DEPTH, sediment/rock; Fall cone penetration test; GC; GeoB13803-2; Gravity corer; M78/3A; Meteor (1986); Porosity, fractional; Shear strength, primary; Shear vane, hand-held
    Type: Dataset
    Format: text/tab-separated-values, 47 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...