GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Publication Date: 2017-05-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-06
    Description: The interplay between sediment deposition patterns, organic matter type and the quantity and quality of reactive mineral phases determines the accumulation, speciation, and isotope composition of pore water and solid phase sulfur constituents in marine sediments. Here, we present the sulfur geochemistry of siliciclastic sediments from two sites along the Argentine continental slope—a system characterized by dynamic deposition and reworking, which result in non-steady state conditions. The two investigated sites have different depositional histories but have in common that reactive iron phases are abundant and that organic matter is refractory—conditions that result in low organoclastic sulfate reduction rates (SRR). Deposition of reworked, isotopically light pyrite and sulfurized organic matter appear to be important contributors to the sulfur inventory, with only minor addition of pyrite from organoclastic sulfate reduction above the sulfate-methane transition (SMT). Pore-water sulfide is limited to a narrow zone at the SMT. The core of that zone is dominated by pyrite accumulation. Iron monosulfide and elemental sulfur accumulate above and below this zone. Iron monosulfide precipitation is driven by the reaction of low amounts of hydrogen sulfide with ferrous iron and is in competition with the oxidation of sulfide by iron (oxyhydr)oxides to form elemental sulfur. The intervals marked by precipitation of intermediate sulfur phases at the margin of the zone with free sulfide are bordered by two distinct peaks in total organic sulfur (TOS). Organic matter sulfurization appears to precede pyrite formation in the iron-dominated margins of the sulfide zone, potentially linked to the presence of polysulfides formed by reaction between dissolved sulfide and elemental sulfur. Thus, SMTs can be hotspots for organic matter sulfurization in sulfide-limited, reactive iron-rich marine sedimentary systems. Furthermore, existence of elemental sulfur and iron monosulfide phases meters below the SMT demonstrates that in sulfide-limited systems metastable sulfur constituents are not readily converted to pyrite but can be buried to deeper sediment depths. Our data show that in non-steady state systems, redox zones do not occur in sequence but can reappear or proceed in inverse sequence throughout the sediment column, causing similar mineral alteration processes to occur at the same time at different sediment depths.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-03-06
    Description: Highlights • Naturally enriched AOM biomass was studied in high-pressure continuous incubation. • We report the first S- and O-isotope fractionation values by sulfate reduction coupled to AOM from culture studies. • There is a tight link between methane concentration and S- and O-isotope fractionation. • S- and O-isotope fractionation values indicate reversibility of energy limited microbial processes. • The wide range of environmental S- and O-isotope signatures can be explained. Abstract Isotope signatures of sulfur compounds are key tools for studying sulfur cycling in the modern environment and throughout earth's history. However, for meaningful interpretations, the isotope effects of the processes involved must be known. Sulfate reduction coupled to the anaerobic oxidation of methane (AOM-SR) plays a pivotal role in sedimentary sulfur cycling and is the main process responsible for the consumption of methane in marine sediments − thereby efficiently limiting the escape of this potent greenhouse gas from the seabed to the overlying water column and atmosphere. In contrast to classical dissimilatory sulfate reduction (DSR), where sulfur and oxygen isotope effects have been measured in culture studies and a wide range of isotope effects has been observed, the sulfur and oxygen isotope effects by AOM-SR are unknown. This gap in knowledge severely hampers the interpretation of sulfur cycling in methane-bearing sediments, especially because, unlike DSR which is carried out by a single organism, AOM-SR is presumably catalyzed by consortia of archaea and bacteria that both contribute to the reduction of sulfate to sulfide. We studied sulfur and oxygen isotope effects by AOM-SR at various aqueous methane concentrations from 1.4±0.6 mM1.4±0.6 mM up to 58.8±10.5 mM58.8±10.5 mM in continuous incubation at steady state. Changes in the concentration of methane induced strong changes in sulfur isotope enrichment (View the MathML sourceεS34) and oxygen isotope exchange between water and sulfate relative to sulfate reduction (θOθO), as well as sulfate reduction rates (SRR). Smallest View the MathML sourceεS34 (21.9±1.9‰21.9±1.9‰) and θOθO (0.5±0.20.5±0.2) as well as highest SRR were observed for the highest methane concentration, whereas highest View the MathML sourceεS34 (67.3±26.1‰67.3±26.1‰) and θOθO (2.5±1.52.5±1.5) and lowest SRR were reached at low methane concentration. Our results show that View the MathML sourceεS34, θOθO and SRR during AOM-SR are very sensitive to methane concentration and thus also correlate with energy yield. In sulfate–methane transition zones, AOM-SR is likely to induce very large sulfur isotope fractionation between sulfate and sulfide (i.e. 〉60‰〉60‰) and will drive the oxygen isotope composition of sulfate towards the sulfate–water oxygen isotope equilibrium value. Sulfur isotope fractionation by AOM-SR at gas seeps, where methane fluxes are high, will be much smaller (i.e. 20 to 40‰).
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: Assessing frequency and extent of mass movement at continental margins is crucial to evaluate risks for offshore constructions and coastal areas. A multidisciplinary approach including geophysical, sedimentological, geotechnical, and geochemical methods was applied to investigate multistage mass transport deposits (MTDs) off Uruguay, on top of which no surficial hemipelagic drape was detected based on echosounder data. Nonsteady state pore water conditions are evidenced by a distinct gradient change in the sulfate (SO42−) profile at 2.8 m depth. A sharp sedimentological contact at 2.43 m coincides with an abrupt downward increase in shear strength from ∼10 to 〉20 kPa. This boundary is interpreted as a paleosurface (and top of an older MTD) that has recently been covered by a sediment package during a younger landslide event. This youngest MTD supposedly originated from an upslope position and carried its initial pore water signature downward. The kink in the SO42− profile ∼35 cm below the sedimentological and geotechnical contact indicates that bioirrigation affected the paleosurface before deposition of the youngest MTD. Based on modeling of the diffusive re-equilibration of SO42− the age of the most recent MTD is estimated to be 〈30 years. The mass movement was possibly related to an earthquake in 1988 (∼70 km southwest of the core location). Probabilistic slope stability back analysis of general landslide structures in the study area reveals that slope failure initiation requires additional ground accelerations. Therefore, we consider the earthquake as a reasonable trigger if additional weakening processes (e.g., erosion by previous retrogressive failure events or excess pore pressures) preconditioned the slope for failure. Our study reveals the necessity of multidisciplinary approaches to accurately recognize and date recent slope failures in complex settings such as the investigated area.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...