GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Language
Years
1
In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, 204(2004), 1/2, Seite 145-159, 1872-6151
In: volume:204
In: year:2004
In: number:1/2
In: pages:145-159
Type of Medium: Online Resource
Pages: Ill., graph. Darst
ISSN: 1872-6151
Language: English
Location Call Number Limitation Availability
BibTip Others were also interested in ...
Associated Volumes
  • 2
    In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, 254(2008), 1/2, Seite 107-120, 1872-6151
    In: volume:254
    In: year:2008
    In: number:1/2
    In: pages:107-120
    Description / Table of Contents: We use new swath bathymetry data acquired during the RV Sonne cruise GEOPECO and complement them with swath data from adjacent regions to analyse the morphotectonics of the Peruvian convergent margin. The Nazca plate is not covered with sediments and therefore has a rough surface along the entire Peruvian trench. The styles of roughness differ significantly along the margin with linear morphological features trending in various directions, most of them oblique to the trench and roughness magnitudes of a few to several hundred meters. The lower slope is locally very rough and at the verge of failure throughout the entire Peruvian margin, as a result of subduction erosion causing the lower slope to over-steepen. Using curvature attributes to quantitatively examine the morphology in the Yaquina and Mendaña areas revealed that the latter shows a larger local roughness both seaward and landward of the trench. However, the amplitude of morphological roughness is larger in the Yaquina area. We identified a 125 km2 large slump on the Lima middle slope. Morphometric dating suggests an age of 74,500 years within 35 to 40% error. Estimated incision rates on the upper slope are between 0.1 and 0.3 mm/yr suggesting that landscape evolution on the Peruvian submarine continental slope is similarly slow than that in the Atacama desert.
    Type of Medium: Online Resource
    Pages: graph. Darst
    ISSN: 1872-6151
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, (2009), 1872-6151
    In: year:2009
    In: extent:12
    Description / Table of Contents: The role of methane in the global bio-geo-system is one of the most important issues of present-day research. Cold seeps, where methane leaves the seafloor and enters the water column, provide valuable evidence of subsurface methane paths. Within the New Vents project we investigate cold seeps and seep structures at the Hikurangi Margin, east of New Zealand. In the area of Opouawe Bank, offshore the southern tip of the North Island, numerous extremely active seeps have been discovered. High-resolution seismic sections show a variety of seep structures. We see seismic chimneys either characterised by high-amplitude reflections or by acoustic turbidity and faults presumably acting as fluid pathways. The bathymetric expression of the seeps also varies: There are seeps exhibiting a flat seafloor as well as a seep located in a depression and small mounds. The images of the 3.5 kHz Parasound system reveal the near-surface structure of the vent sites. While high-amplitude spots within the uppermost 50 m below the seafloor (bsf) are observed at the majority of the seep structures, indicating gas hydrate and/or authigenic carbonate formations with an accumulation of free gas underneath, a few seep structures are characterised by the complete absence of reflections, indicating a high gas content without the formation of a gas trap by hydrates or carbonates. The factors controlling seep formation have been analysed with respect to seep location, seep structure, water depth, seafloor morphology, faults and gas hydrate distribution. The results indicate that the prevailing structural control for seep formation at Opouawe Bank is the presence of numerous minor faults piercing the base of the gas hydrate stability zone.
    Type of Medium: Online Resource
    Pages: 12 , graph. Darst
    ISSN: 1872-6151
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, 263(2009), 1/4, Seite 97-107, 1872-6151
    In: volume:263
    In: year:2009
    In: number:1/4
    In: pages:97-107
    Description / Table of Contents: Newly acquired bathymetric and seismic reflection data have revealed mass-transport deposits (MTDs) on the northeastern Cretan margin in the active Hellenic subduction zone. These include a stack of two submarine landslides within the Malia Basin with a total volume of approximately 4.6 km3 covering an area of about 135 km2. These two MTDs have different geometry, internal deformations and transport structures. The older and stratigraphic lower MTD is interpreted as a debrite that fills a large part of the Malia Basin, while the second, younger MTD, with an age of at least 12.6 cal. ka B.P., indicate a thick, lens-shaped, partially translational landslide. This MTD comprises multiple slide masses with internal structure varying from highly deformed to nearly undeformed. The reconstructed source area of the older MTD is located in the westernmost Malia Basin. The source area of the younger MTD is identified in multiple headwalls at the slopebasin-transition in 450 m water depth. Numerous faults with an orientation almost parallel to the southwestnortheast-trending basin axis occur along the northern and southern boundaries of the Malia Basin and have caused a partial steepening of the slopebasin-transition. The possible triggers for slope failure and mass-wasting include (i) seismicity and (ii) movement of the uplifting island of Crete from neotectonics of the Hellenic subduction zone, and (iii) slip of clay-mineral-rich or ash-bearing layers during fluid involvement.
    Type of Medium: Online Resource
    Pages: graph. Darst
    ISSN: 1872-6151
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, 266(2009), 1/4, Seite 198-211, 1872-6151
    In: volume:266
    In: year:2009
    In: number:1/4
    In: pages:198-211
    Description / Table of Contents: In this study we present a late Miocene-early Pliocene record of sixty-four zones with prominent losses in the magnetic susceptibility signal, taken on a sediment drift (ODP Site 1095) on the Pacific continental rise of the West Antarctic Peninsula. The zones are comparable in shape and magnitude and occur commonly at glacial-to-interglacial transitions. High resolution records of organic matter, magnetic susceptibility and clay mineral composition from early Pliocene intervals demonstrate that neither dilution effects nor provenance changes of the sediments have caused the magnetic susceptibility losses. Instead, reductive dissolution of magnetite under suboxic conditions seems to be the most likely explanation. We propose that during the deglaciation exceptionally high organic fluxes in combination with weak bottom water currents and prominent sediment draping diatom ooze layers produced temporary suboxic conditions in the uppermost sediments. It is remarkable that synsedimentary suboxic conditions can be observed in one of the best ventilated open ocean regions of the World.
    Type of Medium: Online Resource
    Pages: Ill., graph. Darst
    ISSN: 1872-6151
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, 241(2007), 1/4, Seite 33-43, 1872-6151
    In: volume:241
    In: year:2007
    In: number:1/4
    In: pages:33-43
    Description / Table of Contents: Bathymetric and conventional multichannel seismic surveys offshore Nicaragua and Costa Rica have revealed numerous mud mounds beneath which the generally widespread BSR is not well imaged. However, many of the mounds are partially capped by patches of authigenic carbonate crusts, so it was not clear if the semitransparent seismic facies and the apparent gaps in the BSR beneath the mounds are real or due to poor normal-incidence seismic penetration through the cap rocks. To address these problems, a high-resolution seismic survey was carried out over the continental slope of the Nicaraguan Pacific margin using a deep towed multichannel seismic streamer (DTMCS) along with a sidescan sonar system (DTS) to image submarine mud mounds and the associated BSR. The proximity of the very short (39 m active length) but high-resolution 17 channel streamer to the seafloor of the deep towed system allows greatly improved lateral resolution whereas the relatively large sourcereceiver offset allows the undershooting of the cap rocks. For the first time our data show that the BSR in many cases continues but rises beneath the mounds. This is consistent with the advection of deep warm fluids and thus increased heat flow through the mounds. The occurrence of mud mounds seems to be controlled by the locations of faults.
    Type of Medium: Online Resource
    Pages: graph. Darst., Kt
    ISSN: 1872-6151
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, 247(2008), 1/2, Seite 46-60, 1872-6151
    In: volume:247
    In: year:2008
    In: number:1/2
    In: pages:46-60
    Description / Table of Contents: This study documents the fractal characteristics of submarine mass movement statistics and morphology within the Storegga Slide. Geomorphometric mapping is used to identify one hundred and fifteen mass movements from within the Storegga Slide scar and to extract morphological information about their headwalls. Analyses of this morphological information reveal the occurrence of spatial scale invariance within the Storegga Slide. Non-cumulative frequency-area distribution of mass movements within the Storegga Slide satisfies an inverse power law with an exponent of 1.52. The headwalls exhibit geometric similarity at a wide range of scales and the lengths of headwalls scale with mass movement areas. Composite headwalls are self-similar. One of the explanations of the observed spatial scale invariance is that the Storegga Slide is a geomorphological system that may exhibit self-organized criticality. In such a system, the input of sediment is in the form of hemipelagic sedimentation and glacial sediment deposition, and the output is represented by mass movements that are spatially scale invariant. In comparison to subaerial mass movements, the aggregate behavior of the Storegga Slide mass movements is more comparable to that of the theoretical ‘sandpile’ model. The origin of spatial scale invariance may also be linked to the retrogressive nature of the Storegga Slide. The geometric similarity in headwall morphology implies that the slope failure processes are active on a range of scales, and that modeling of slope failures and geohazard assessment can extrapolate the properties of small landslides to those of larger landslides, within the limits of power law behavior. The results also have implications for the morphological classification of submarine mass movements, because headwall shape can be used as a proxy for the type of mass movement, which can otherwise only be detected with very high resolution acoustic data that are not commonly available.
    Type of Medium: Online Resource
    ISSN: 1872-6151
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, 259(2009), 1/4, Seite 47-58, 1872-6151
    In: volume:259
    In: year:2009
    In: number:1/4
    In: pages:47-58
    Description / Table of Contents: Continental shelves represent areas of highest economical and ecological importance. Nevertheless, these sedimentary systems remain poorly understood due to a complex interplay of various factors and processes which results in highly individual construction schemes. Previous studies of sedimentary shelf systems have mainly focused on a limited number of cores, retrieved from Holocene fine-grained depocentres. As such, the relation between shelf architecture and sedimentary history remains largely obscure. Here, we present new data from the NW Iberian shelf comprising shallow-seismic profiles, a large number of sediment cores, and an extended set of radiocarbon dates to reveal the Late Quaternary evolution of a low-accumulation shelf system in detail. On the NW Iberian shelf, three main seismic units are identified. These overly a prominent erosional unconformity on top of the basement. The lowermost Unit 1 is composed of maximal 75-m thick, Late Tertiary to Pleistocene deposits. The youngest sediments of this unit are related to the last glacial sea-level fall. Unit 2 was controlled by the deglacial sea-level rise and shows a maximum thickness of 15 m. Finally, Unit 3 comprises deposits related to the late stage of sea-level rise and the modern sea-level highstand with a thickness of 4 m in mid-shelf position. Two pronounced seismic reflectors separate these main units from each other. Their origin is related to (1) exposure and ravinement processes during lower sea level, and (2) to reworking and re-deposition of coarse sediments during subsequent sea-level rise. According to the sediment core ground-truthing, sediments of the Late Tertiary to Pleistocene unit predominantly display homogenous fine sands with exceptional occurrences of palaeosols that indicate an ancient exposure surface. Fine sands which were deposited in the run of the last sea-level rise show a time-transgressive retrogradational development. The seismic reflectors, bounding the individual units, appear in the cores as 0.1 to 1-m thick deposits consisting either of shell gravels or siliceous coarse sands with gravels. The modern sea-level highstand stage is characterised by zonal deposition of mud forming a mud belt in mid-shelf position, and sediment starvation on outer shelf zones. Radiocarbon ages indicate that this mud belt was the main depocentre for river-supplied fine material on the NW Iberian shelf at least over the past 5.32 ka BP. The initial onset of this depocentre is proposed to be related to a shift in the balance between rate of sea-level rise and amount of terrigenous sediment supply. Various other stratigraphical shelf reconstructions reveal analogies in architecture which indicate that timing and shaping of the individual units on low-accumulation shelves is fundamentally controlled by eustatic sea-level changes. Other factors of local importance such as differential elevation of the basement and the presence of morphological barriers formed by rocky outcrops on the seafloor have additionally modifying influence on the sedimentary processes.
    Type of Medium: Online Resource
    Pages: Ill., graph. Darst
    ISSN: 1872-6151
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, 272(2010), Seite 6-25, 1872-6151
    In: volume:272
    In: year:2010
    In: pages:6-25
    Description / Table of Contents: This paper is an introduction to and an overview of papers presented in the Special Issue of Marine Geology "Methane seeps at the Hikurangi Margin, New Zealand". In 2006 and 2007, three research cruises to the Hikurangi Margin at the east coast of New Zealand's North Island were dedicated to studying methane seepage and gas hydrates in an area where early reports suggested they were widespread. Two cruises were carried out on RV TANGAROA and one on RV SONNE using the complete spectrum of state-of-the-art equipment for geophysics (seismic, sidescan, controlled source electromagnetics, ocean bottom seismometers and hydrophones, singlebeam and multibeam), seafloor observations (towed camera systems, ROV), sediment and biological sampling (TV-guided multi-corer, gravity-corer, grab, epibenthic sled), deployment of in-situ observatories (landers) as well as water column sampling and oceanographic studies (CTD, moorings). The scientific disciplines involved ranged from geology, geophysics, petrography, geochemistry, to oceanography, biology and microbiology. These cruises confirmed that a significant part of the Hikurangi Margin has been active with locally intense methane seepage at present and in the past, with the widespread occurrence of dead seep faunas and knoll-forming carbonate precipitations offshore and on the adjacent land. A close link to seismically detected fluid systems and the outcropping of the base of the gas hydrate stability zone can be found at some places. Pore fluid and free gas release were found to be linked to tides. Currents as well as density layers modulate the methane distribution in the water column. The paper introduces the six working areas on the Hikurangi Margin, and compiles all seep locations based on newly processed multibeam and multibeam backscatter data, water column hydroacoustic and visual data that are combined with results presented elsewhere in this Special Issue. In total, 32 new seep sites were detected that commonly show chemoherm-type carbonates or carbonate cemented sediment with fissures and cracks in which calyptogenid clams and bathymodiolid mussels together with sibloglinid tube worms live. White bacterial mats of the genus Beggiatoa and dark gray beds of heterotrophic ampharetid polychaetes typically occur at active sites. Bubble release has frequently been observed visually as well as hydroacoustically (flares) and geochemical analyses show that biogenic methane is released. All seep sites, bubbling or not, were inside the gas hydrate stability zone. Gas hydrate itself was recovered at three sites from the seafloor surface or 2.5 m core depth as fist-sized chunks or centimeter thick veins. The strong carbonate cementation that in some cases forms 50 m high knolls as well as some very large areas being paved with clam shells indicates very strong and long lasting seep activity in the past. This activity seems to be less at present but nevertheless makes the Hikurangi Margin an ideal place for methane-related seep studies in the SW-Pacific.
    Type of Medium: Online Resource
    Pages: Ill., graph. Darst
    ISSN: 1872-6151
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, 244(2007), 1/4, Seite 166-183, 1872-6151
    In: volume:244
    In: year:2007
    In: number:1/4
    In: pages:166-183
    Type of Medium: Electronic Resource
    Pages: Ill., graph. Darst., Kt
    ISSN: 1872-6151
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...