GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cambridge :Royal Society of Chemistry,
    Keywords: Electronic books.
    Description / Table of Contents: Looking at current research as well as future trends Functional Hybrid Nanomaterials for Environmental Remediation is a useful resource for nanomaterial scientists and environmental chemists.
    Type of Medium: Online Resource
    Pages: 1 online resource (321 pages)
    Edition: 1st ed.
    ISBN: 9781839165283
    Series Statement: ISSN
    Language: English
    Note: Cover -- Functional Hybrid Nanomaterials for Environmental Remediation -- Preface -- Contents -- Chapter 1 - The Role of Functional Nanomaterials for Wastewater Remediation -- 1.1 Introduction -- 1.2 Nanomaterials -- 1.2.1 Metal and Metal Oxide- based Nanomaterials -- 1.2.2 Carbon- based Nanomaterials -- 1.2.3 Organic Framework -- 1.2.4 Hybrid Nanomaterials -- 1.3 Roles and Applications of Functional Nanomaterials for Wastewater Treatment -- 1.3.1 Photocatalysts -- 1.3.2 Adsorbents -- 1.3.3 Disinfectants -- 1.3.4 Nanocomposite Membranes -- 1.4 Outlook and Conclusions -- Acknowledgements -- References -- Chapter 2 - Synthesis of Functional Hybrid Nanomaterials Using Green Chemistry Approaches -- 2.1 Introduction -- 2.2 Chemistry of Hybrid Materials and Synthesis Procedures -- 2.2.1 Inorganic Constituents -- 2.2.2 Organic Constituents -- 2.2.3 Hybrid Interface -- 2.3 General Preparation Techniques for Hybrids -- 2.4 Functional Hybrid Nano- architectures -- 2.4.1 Copolymer Micelles as 0D Nano- structures -- 2.4.2 Preparation of 1D Nano- structures -- 2.4.3 Preparation of 2D Nano- structures -- 2.4.4 Preparation of 3D Nano- objects -- 2.5 Using Surfactants to Prepare Mesoporous Functionalized Materials -- 2.5.1 Functionalization of Pores -- 2.5.2 Framework Functionalization in Mesoporous Materials -- 2.5.3 Pores and Framework Functionalization -- 2.6 Preparation of Lamellar Functional Materials Via Self- assembly -- 2.6.1 Weak Interactions -- 2.6.2 Functionalized Layered Materials -- 2.6.3 Monosilylated Precursor -- 2.7 Reasonable Design of Hybrid Structures -- 2.8 Novel Porous Hybrid Materials -- 2.8.1 Periodically Organized Mesoporous Hybrid Materials (POMHM) -- 2.8.2 MOFs -- 2.8.2.1 Modification of MOFs -- 2.8.2.1.1 New Techniques in PSM.Many studies have concentrated on recognizing organic precursors and reactions that can be utilized in PSM. , 2.9 Magnetic Hybrid Nano- materials -- 2.10 Commercialization and Future Prospectives -- 2.11 Conclusions -- References -- Chapter 3 - Characterization of Functional Hybrid Nanomaterials -- 3.1 Introduction -- 3.2 IR- based Techniques -- 3.2.1 Raman Spectroscopy -- 3.2.2 Infrared Spectroscopy -- 3.2.3 Nuclear Magnetic Resonance (NMR) -- 3.3 X- Ray Based Tools -- 3.4 Brunauer-Emmett-Teller (BET) -- 3.5 Thermal Gravimetric Analysis (TGA) -- 3.6 Low- energy Ion Scattering (LEIS) -- 3.7 Dynamic Light Scattering (DLS) -- 3.8 Mass Spectrometry (MS) -- 3.9 Mechanical Properties -- 3.10 Morphological Characterization Method -- 3.10.1 Electron Microscopy -- 3.10.1.1 Scanning Electron Microscopy -- 3.10.1.1.1 Conventional SEM.A conventional SEM can provide accurate statistical data for estimating the particle size and the size distribu... -- 3.10.1.1.2 Environmental SEM.ESEM is one of the latest innovations in SEM, introduced to enable wet, uncoated samples to be analyzed. It is... -- 3.10.1.1.3 Field Emission Scanning Electron Microscopy.FESEM is an advanced version of SEM as the main role remains to deliver topographica... -- 3.10.1.2 Transmission Electron Microscopy -- 3.10.1.2.1 High- resolution Transmission Electron Microscopy.In contrast with the standard operating mode, HRTEM uses a very large objectiv... -- 3.10.1.2.2 Selected Area Electron Diffraction.Another important function of TEM is to provide the image of lattice points of a material thr... -- 3.10.2 Spectroscopic Particle Size Analysis -- 3.10.2.1 Laser Diffraction -- 3.10.2.2 Dynamic Light Scattering -- 3.11 Conclusion -- References -- Chapter 4 - Nanomaterials and Their Modification for Environmental Remediation -- 4.1 Introduction -- 4.2 Nanomaterials for Environmental Remediation -- 4.3 Zero Dimensional (0D) Nanomaterials for Environmental Remediation -- 4.3.1 Doped 0D Nanomaterials. , 4.3.1.1 Non- metal Doped 0D Nanomaterials -- 4.3.1.2 Metal- doped 0D Nanomaterials -- 4.3.2 Composites of 0D Nanomaterials -- 4.3.2.1 Core-Shell Nanocomposites -- 4.4 1D Nanomaterials for Environmental Remediation -- 4.4.1 Doped 1D Nanomaterials -- 4.4.1.1 Non- metal- doped 1D Nanomaterials -- 4.4.1.2 Metal- doped 1D Nanomaterials -- 4.4.2 Composites of 1D Nanomaterials -- 4.5 2D NMs for Environmental Remediation -- 4.5.1 Carbon- based 2D NMs -- 4.5.1.1 Composites of Carbon- based 2D NMs -- 4.6 Conclusions and Outlook -- Acknowledgements -- References -- Chapter 5 - Polymer- based Nanocomposites for Environmental Remediation -- 5.1 Introduction -- 5.2 Polymer- based Nanocomposite -- 5.2.1 Membranes -- 5.2.1.1 Carbon- based Nanocomposite Polymeric Membrane -- 5.2.1.2 Metal and Non- metal- based Nanocomposite Polymeric Membrane -- 5.2.1.3 Hybrid Nanocomposite Polymeric Membrane -- 5.2.2 Adsorbents -- 5.2.2.1 Natural Polymer- based Adsorbents -- 5.2.2.2 Synthetic Polymer- based Adsorbents -- 5.2.3 Aerogels and Hydrogels -- 5.2.3.1 Nanocomposite Hydrogel -- 5.2.3.2 Nanocomposite Aerogel -- 5.3 Conclusion -- Acknowledgements -- References -- Chapter 6 - Magnetic Nanocomposites for Environmental Remediation -- 6.1 Introduction -- 6.2 Structure and Magnetic Characteristics of MNPs -- 6.2.1 Physical Properties -- 6.2.2 Magnetic Properties -- 6.2.3 Structural Properties -- 6.2.4 Thermodynamic Properties -- 6.2.5 Surface Properties -- 6.3 Nanoparticles Fabrication -- 6.3.1 Top- down Methods -- 6.3.1.1 Mechanical Milling -- 6.3.1.2 Chemical Etching -- 6.3.1.3 Laser Ablation -- 6.3.1.4 Sputtering -- 6.3.2 Bottom- up Methods -- 6.3.2.1 Chemical Vapour Deposition (CVD) -- 6.3.2.2 Sol-Gel Process -- 6.3.2.3 Hydrothermal Syntheses -- 6.3.2.4 Co- Precipitation -- 6.3.2.5 Spray and Laser Pyrolysis -- 6.3.2.6 Combustion -- 6.3.2.7 Microwave -- 6.3.2.8 Microemulsion. , 6.3.2.9 Green Synthesis -- 6.4 Identification and Characterization Techniques -- 6.5 Environmental Applications of Magnetic Nanoparticles -- 6.5.1 Adsorption of Environmental Pollutants -- 6.5.2 Catalytic Degradation of Environmental Pollutants -- 6.5.3 Sensor- based Detection of Environmental Pollutants -- 6.5.4 Coagulants for Environmental Pollutants Aggregation -- 6.5.5 Transformation of Environmental Pollutants -- 6.5.6 Remediation of Bacterial Contaminants -- 6.5.7 Remediation of Organic Contaminants -- 6.5.8 Remediation of Radionuclides -- 6.5.9 Remediation of Inorganic Contaminants and Heavy Metals -- 6.6 Challenges and Environmental Impacts -- References -- Chapter 7 - Photocatalytic Nanocomposites for Environmental Remediation -- 7.1 Introduction -- 7.2 Application of Photocatalysis in Environmental Remediation -- 7.2.1 Water and Wastewater Treatment -- 7.2.2 Air Pollution -- 7.3 Nanocomposite Photocatalysts -- 7.4 UV Light Driven Photocatalysts -- 7.4.1 TiO2 Nanoparticles -- 7.4.2 TiO2- doped Materials -- 7.4.3 Non- TiO2 Nanocomposites -- 7.5 Visible Light Driven Photocatalysts -- 7.5.1 TiO2- doped Materials -- 7.5.2 Non- TiO2 Materials -- 7.6 Nanocomposite Photocatalyst- supported Film -- 7.6.1 Membranes -- 7.6.2 Other Supports -- 7.7 Conclusion -- References -- Chapter 8 - Antimicrobial Nanocomposites for Environmental Remediation -- 8.1 Introduction -- 8.2 Environmental Remediation of Antimicrobial Nanocomposites -- 8.3 Preparation of Antimicrobial Nanocomposites -- 8.3.1 Metal Ion/Metal Oxide/Metal Nanoparticle- based Antimicrobial Nanocomposites -- 8.3.2 Polymer- based Antimicrobial Nanocomposites -- 8.3.3 Carbon- based Antimicrobial Nanocomposites -- 8.3.4 Nano- clay- based Antimicrobial Nanocomposites -- 8.3.5 Organic Compound- based Antimicrobial Nanocomposites. , 8.4 Environmental Remediation Applications of Antimicrobial Nanocomposites -- 8.4.1 Coatings -- 8.4.2 Water Treatment -- 8.4.3 Food Packaging and Food Materials -- 8.5 Antimicrobial Nanocomposites for Future Demand -- 8.6 Conclusions -- Acknowledgements -- References -- Chapter 9 - Functional Nanocomposites for Heavy Metal Removal -- 9.1 Introduction -- 9.2 Importance of the Subject -- 9.3 Heavy Metal Removal Methods -- 9.4 Adsorption -- 9.5 Nano- adsorbents -- 9.6 Adsorptive Mixed Matrix Membrane (AMMM) -- 9.7 The Effect of Type of Nano- adsorbents on AMMM Performance -- 9.7.1 Porosity and Thickness -- 9.7.2 Effect of Nano- adsorbents on the Skin Layer Structure -- 9.7.3 Hydrophilic Behavior of Nano- adsorbents -- 9.7.4 AMMM Flux -- 9.7.5 Adsorption Capacity -- 9.7.6 AMMM versus pH, Regeneration, and Leakage -- 9.8 Challenges -- References -- Chapter 10 - Functional Nanocomposites for Groundwater Treatment -- 10.1 Introduction -- 10.2 Removal of Heavy Metal Ions -- 10.2.1 Arsenic -- 10.2.2 Chromium -- 10.2.3 Magnesium -- 10.2.4 Lead -- 10.2.5 Vanadium -- 10.2.6 Caesium -- 10.2.7 Selenium -- 10.2.8 Mercury -- 10.3 Anions -- 10.4 Organic Pollutants -- 10.5 Other Pollutants -- 10.6 Conclusions -- List of Abbreviations -- Acknowledgements -- References -- Chapter 11 - Functional Nanocomposites for Removal of Contaminants of Emerging Concern -- 11.1 Introduction -- 11.2 Contaminants of Emerging Concern (CECs) -- 11.3 Nanotechnology for CECs Removal -- 11.3.1 Nanomaterials -- 11.3.1.1 Inorganic Nanomaterials -- 11.3.1.1.1 Metal- and Metal Oxide- based.These nanomaterials exhibit excellent microbial decontamination with advantages such as high adso... -- 11.3.1.1.2 Silica Materials.These nanomaterials possess advantages for environmental remediation applications such as high surface area, tu... -- 11.3.1.2 Carbon- based Nanomaterials. , 11.3.1.2.1 Graphene Materials.Graphene is a systematic honeycomb network of graphite that in both in its pristine or derivatives forms, suc.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Membranes (Biology). ; Nanostructured materials-Synthesis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (344 pages)
    Edition: 1st ed.
    ISBN: 9780128145043
    Series Statement: Micro and Nano Technologies Series
    DDC: 620.115
    Language: English
    Note: Front Cover -- Advanced Nanomaterials for Membrane Synthesis and Its Applications -- Copyright -- Contents -- Contributors -- About the Editor -- Lead Editor Biography -- Co-Editor Biography -- Preface -- Chapter 1: Development of adsorptive ultrafiltration membranes for heavy metal removal -- 1.1. Introduction -- 1.2. Membrane Technologies for Heavy Metal Removal -- 1.3. Progress of Adsorptive Membranes for Heavy Metal Removals -- 1.3.1. Adsorptive Membranes Incorporated With Metal Oxide Nanoparticles -- 1.3.2. Adsorptive Membranes Incorporated With Carbon-Based Nanomaterials -- 1.3.3. Adsorptive Membranes Incorporated With Other Nanomaterials -- 1.4. Conclusions -- References -- Chapter 2: Carbon-based nanocomposite membranes for water and wastewater purification -- 2.1. Introduction -- 2.2. Carbon Nanotubes and Graphene Oxide -- 2.2.1. Applications of CNTs and GO in Water and Wastewater Purification -- 2.2.1.1. Desalination -- 2.2.1.2. Dye removal -- 2.2.1.3. Oil/water separation -- 2.2.1.4. Natural organic matter removal -- 2.3. Conclusion and Future Potential -- References -- Chapter 3: Development of nanomaterial-based photocatalytic membrane for organic pollutants removal -- 3.1. Introduction -- 3.2. Organic Pollutants -- 3.2.1. Endocrine-Disrupting Chemicals -- 3.2.2. Synthetic Dyes -- 3.3. Photocatalysis and Photocatalytic Degradation of Organic Pollutants -- 3.4. Mixed Matrix Photocatalytic Membranes -- 3.5. Dual Layer Photocatalytic Membrane -- 3.6. Challenges and Future Prospects -- 3.7. Conclusion -- References -- Chapter 4: Progress of stimuli responsive membranes in water treatment -- 4.1. Introduction -- 4.1.1. Implementation of Stimuli-Responsive Membrane in Water Treatment -- 4.1.1.1. Plug-in/plug-off concept -- 4.1.1.2. Structural flexibility of stimuli-responsive membrane. , 4.1.2. Advancement of Stimuli-Responsive Mixed-Matrix Membrane in Water Treatment -- 4.1.2.1. Membrane indirectly stimulated by thermodynamics environment -- 4.1.2.2. Membrane direct stimulated by chemical cues -- 4.1.2.3. Membrane stimulated by a specific external electrical field or potential signal -- 4.1.2.4. Membrane stimulated by a specific external electromagnetic field signal -- 4.1.3. Synthesis of Stimuli-Responsive Mixed-Matrix Membrane -- 4.1.3.1. In situ polymerization or interpenetrating polymer network -- 4.1.3.2. Surface modification -- 4.1.4. Feasibility of Industrial Applications -- 4.2. Conclusion -- References -- Chapter 5: The use of nanomaterials in the synthesis of nanofiber membranes and their application in water treatment -- 5.1. Introduction -- 5.2. Materials Used in the Synthesis of Polymeric Nanofiber Membranes -- 5.3. Electrospinning as a Common Synthesis Method for Nanofiber Membranes -- 5.4. Solution Blow Spinning -- 5.5. Nanomaterials Used in the Synthesis of Nanofiber Membranes for Water Treatment Applications -- 5.6. Conclusion and Future Prospects -- References -- Further Reading -- Chapter 6: Zeolite-based mixed matrix membranes for hazardous gas removal -- 6.1. Introduction -- 6.2. Mixed Matrix Membranes for Hazardous Gas Removal -- 6.2.1. Selection of Membrane Materials -- 6.2.1.1. Polymer matrix -- 6.2.1.2. Zeolite selection -- 6.2.2. Current Development of Zeolite-Based MMMs -- 6.3. Factors Influencing the Mixed Matrix Membrane Fabrication -- 6.4. The Formation and the Method to Overcome Defects in MMMs -- 6.4.1. Modification Prior to Mixing -- 6.4.1.1. Encoring nanostructure roughness -- 6.4.1.2. Zeolite surface coating and priming -- 6.4.2. Gap Filling and Bridging Method -- 6.4.2.1. Low molecular additives -- 6.4.2.2. Silane coupling agents -- 6.4.3. Thermal Annealing -- 6.5. Gas Transport in MMMs. , 6.5.1. Predictive Models for Gas Transport in Ideal MMMs -- 6.5.2. Predictive Models for Gas Transport in Nonideal MMMs -- 6.6. Opportunities for Future Development and Conclusion -- References -- Further Reading -- Chapter 7: Nanomaterial-incorporated nanofiltration membranes for organic solvent recovery -- 7.1. Introduction -- 7.2. Brief Description of SRNF Membrane Synthesis -- 7.2.1. Mixed Matrix Membranes by Phase Inversion Technique -- 7.2.2. Thin Film Composite Membranes by Interfacial Polymerization Technique -- 7.3. Roles of Nanomaterials in SRNF Membranes -- 7.3.1. Graphene Oxide Nanosheet -- 7.3.2. Metal Organic Frameworks -- 7.3.3. Metal Oxides -- 7.3.4. Other Nanomaterials -- 7.4. Conclusions -- References -- Chapter 8: Carbon nanotube composite membranes for microfiltration of pharmaceuticals and personal care products -- 8.1. Introduction -- 8.2. Effects of CNT Properties on PPCP Removal -- 8.2.1. Structural Properties of the CNT Membranes -- 8.2.2. AAP Filtration by MWCNT Membranes -- 8.3. Effects of Water Quality Conditions on PPCP Removal -- 8.3.1. Solution pH -- 8.3.2. Ionic Strength and Calcium Concentration -- 8.3.3. Presence of Natural Organic Matter -- 8.4. Effect of PPCP Properties on Their Removals -- 8.5. Filtration of PPCP From Realistic Water -- 8.5.1. Effect of Precoagulation -- 8.5.2. Mechanisms of Precoagulation for Enhanced PPCP Adsorption -- 8.6. Thermal Regeneration of Carbon Nanotubes -- 8.6.1. Thermal Regeneration of MWCNT -- 8.6.2. Effects of Thermal Regeneration on MWCNT Properties -- 8.7. Conclusion -- References -- Further Reading -- Chapter 9: Metal-organic framework based membranes for gas separation -- 9.1. Introduction -- 9.2. Membranes -- 9.2.1. Polymeric Membranes -- 9.2.2. Inorganic Membranes -- 9.2.3. Metal Organic Framework Based Membranes -- 9.2.3.1. Pure MOF membrane. , Methods of MOF membrane fabrication -- Solvothermal deposition -- Liquid phase epitaxy -- Self-assembly monolayer -- Microwave-assisted thin-film fabrication -- Seed growth method -- Aspects of MOF-based separations -- Challenges in pure MOF membranes -- 9.2.3.2. Mixed matrix membranes -- 9.3. Gas Transport Mechanisms in MOF-Based Membranes -- 9.4. Summary -- References -- Further Reading -- Chapter 10: Nanomaterial-incorporated sulfonated poly(ether ether ketone) (SPEEK) based proton-conducting& -- sp -- 10.1. Proton Exchange Membranes -- 10.2. Proton-Conduction Mechanism -- 10.2.1. Measurement of Proton Conductivity -- 10.3. Sulfonated Poly(Ether Ether Ketone) -- 10.3.1. SPEEK-Based Nanocomposite Membranes -- 10.3.1.1. Carbon-based nanofillers -- 10.3.1.2. Nanoclay as nanofiller -- 10.3.2. SPEEK Nanofiber-Based Nanocomposite Membrane -- 10.4. Conclusion and Future Prospects -- References -- Further Reading -- Chapter 11: Synthesis of nanomaterial-incorporated pressure retarded osmosis membrane for energy generation -- 11.1. Pressure Retarded Osmosis Process for Energy Generation -- 11.1.1. Introduction -- 11.1.2. Pressure Retarded Osmosis -- 11.2. Theory -- 11.2.1. Osmotic Processes -- 11.2.2. Theoretical Potential of Osmotic Pressure Gradient Energy -- 11.2.3. Concentration Polarization -- 11.2.4. The Model Description of PRO Process -- 11.3. Membranes for Pressure Retarded Osmosis -- 11.3.1. Roles of Nanomaterials on TFC/TFN Membranes -- 11.3.2. TFC/TFN Membranes for Energy Generation -- 11.3.2.1. Typical TFC membranes -- 11.3.2.2. TFN membranes incorporated with nanomaterials -- 11.3.2.3. TFN membranes made of nanofiber -- 11.4. Conclusion -- References -- Chapter 12: Beneficial effect of carbon nanotubes on membrane properties for fuel cell application -- 12.1. Introduction -- 12.2. CNT Modifications -- 12.2.1. Single-Walled CNTS. , 12.2.1.1. Polybenzimidazole functionalized CNTs -- 12.2.2. Multiwalled CNTS -- 12.2.2.1. Polybenzimidazole-based multiwalled CNTs -- 12.2.2.2. Ceria-coated multiwalled CNTs -- 12.2.2.3. Sulfonated multiwalled CNTs -- 12.2.2.4. Phosphonated multiwalled CNTs -- 12.2.2.5. Others -- 12.3. Conclusion -- References -- Chapter 13: Nanocomposite and nanostructured ion-exchange membrane in salinity gradient power generation using reverse el ... -- 13.1. Introduction -- 13.2. Key Properties of Ion Exchange Membranes -- 13.3. Nanocomposite IEMs for RED -- 13.3.1. Synthesis of CEMs -- 13.3.2. Synthesis of AEMs -- 13.3.3. Potential Advanced Nanomaterials -- 13.3.3.1. Inorganic nanomaterials in IEM synthesis -- 13.3.3.2. Carbon-based nanomaterials in IEM synthesis -- 13.4. Emerging Nanostructures in SGE Harvesting -- 13.5. Conclusions and Perspectives -- References -- Index -- Back Cover.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Osmosis. ; Separation (Technology). ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (389 pages)
    Edition: 1st ed.
    ISBN: 9780128231883
    DDC: 660.2842
    Language: English
    Note: Front Cover -- Osmosis Engineering -- Copyright Page -- Contents -- List of contributors -- Biographies -- Preface -- 1 Basic principles of osmosis and osmotic pressure -- 1.1 Introduction -- 1.2 What is osmotic pressure? -- 1.3 Relation of osmotic pressure to other colligative properties -- 1.3.1 Vapor pressure depression -- 1.3.2 Freezing point depression -- 1.3.3 Boiling point elevation -- 1.4 Origins of osmotic pressure in solution -- 1.5 Osmotic flow -- 1.6 Reflection coefficient -- Acknowledgement -- References -- 2 Fundamentals and application of reverse osmosis membrane processes -- 2.1 Introduction -- 2.2 Principles of RO -- 2.2.1 Definition of osmotic pressure and RO -- 2.2.2 Theoretical minimum energy for separation from osmotic pressure -- 2.2.3 Permeation mechanism and equations in the RO process -- 2.2.4 Concentration polarization -- 2.2.5 Mass balance and pressure drop equations in the RO process -- 2.2.6 Energy consumption in the RO process -- 2.3 RO system and design -- 2.3.1 Single-stage/pass BWRO -- 2.3.2 Two/multistage BWRO -- 2.3.3 Single-stage/pass SWRO -- 2.3.4 Two-stage SWRO -- 2.3.5 Two-pass SWRO -- 2.3.5.1 Full two pass -- 2.3.5.2 Partial second pass -- 2.3.5.3 Split partial second pass -- 2.3.6 Internally staged design -- 2.3.7 Pressure-center design -- 2.4 RO fouling -- 2.4.1 Particulate/colloidal fouling -- 2.4.2 Organic fouling -- 2.4.3 Biofouling -- 2.4.4 Scaling -- 2.5 Detection of RO fouling potential -- 2.5.1 Silt density index -- 2.5.2 Modified fouling index -- 2.6 Mitigation of RO fouling -- 2.6.1 Pretreatment processes -- 2.6.2 Membrane maintenance -- Acknowledgment -- References -- 3 Principles of nanofiltration membrane processes -- 3.1 Introduction -- 3.2 Basic principle of NF membrane separation process -- 3.2.1 Steric effect -- 3.2.2 Donnan effect -- 3.2.3 Dielectric effect -- 3.2.4 Transport effect. , 3.2.5 Adsorption effect -- 3.3 Synthesis and modification of NF membrane -- 3.3.1 Phase inversion -- 3.3.2 Interfacial polymerization -- 3.3.2.1 Monomer -- 3.3.2.2 Additives -- 3.3.2.3 Others -- 3.3.3 Grafting polymerization -- 3.3.3.1 UV/photo-grafting -- 3.3.3.2 EB irradiation -- 3.3.3.3 Plasma treatment -- 3.3.3.4 Layer-by-layer -- 3.4 Design and operation of NF process -- 3.4.1 Module design -- 3.4.2 Operation -- 3.5 Limitation of the NF membrane applications -- 3.5.1 Concentration polarization and membrane fouling -- 3.5.2 Factors affecting membrane fouling -- 3.5.3 Fouling mitigation -- 3.5.3.1 Passive fouling control -- 3.5.3.2 Active fouling control -- 3.6 Conclusions -- References -- 4 Recent development in nanofiltration process applications -- 4.1 Introduction -- 4.2 Applications of NF membrane process -- 4.2.1 Water and wastewater -- 4.2.2 Desalination -- 4.2.3 Food industry -- 4.2.4 Biorefinery applications -- 4.2.5 Organic solvent NF -- 4.3 Conclusions -- References -- 5 Principles of forward osmosis -- 5.1 Introduction -- 5.2 Water flux in FO -- 5.3 Practical challenges in FO process -- 5.3.1 Concentration polarization -- 5.3.1.1 External concentration polarization -- 5.3.1.2 Internal concentration polarization -- 5.3.2 Reverse solute flux -- Acknowledgments -- References -- 6 Recent developments in forward osmosis and its implication in expanding applications -- 6.1 Introduction -- 6.2 Forward osmosis -- 6.2.1 Theoretical background -- 6.2.2 Process description -- 6.3 Technological factors -- 6.3.1 Forward osmosis membrane -- 6.3.2 Draw solution -- 6.4 Understanding of fouling in forward osmosis -- 6.4.1 Operation without hydraulic pressure -- 6.4.2 Bidirectional diffusion -- 6.4.3 Fouling control and cleaning in forward osmosis -- 6.5 Exploiting advantages of forward osmosis in its applications. , 6.5.1 Feed concentration process with high water recovery -- 6.5.1.1 High-quality product -- 6.5.1.2 Effective resource recovery -- 6.5.1.3 Minimal environmental impact -- 6.5.2 Draw dilution process with lower energy consumption -- 6.5.2.1 Stand-alone forward osmosis system: direct use -- 6.5.2.2 Hybrid forward osmosis systems -- 6.5.2.2.1 Indirect desalting process along with wastewater reclamation -- 6.5.2.2.2 Direct desalting process for draw solute recovery -- 6.6 Conclusion and perspectives -- Acknowledgment -- References -- 7 Principle and theoretical background of pressure-retarded osmosis process -- 7.1 Introduction -- 7.2 Theory and modeling of osmotic pressure -- 7.2.1 Pitzer model for osmotic pressure -- 7.2.2 Van Laar's model for osmotic pressure -- 7.2.3 Water and solute activities -- 7.2.4 Newton-Raphson method for osmotic pressure -- 7.3 Osmotic power generation -- 7.3.1 Van't Hoff model for Gibbs free energy -- 7.3.2 Piston model for Gibbs energy and energy density -- 7.4 Dual- and multistage pressure-retarded osmosis process -- Acknowledgment -- References -- 8 Application of PRO process for seawater and wastewater treatment: assessment of membrane performance -- 8.1 Introduction -- 8.2 Modeling pressure-retarded osmosis process -- 8.2.1 Water flux and extractable power -- 8.2.2 Reverse solute flux -- 8.2.3 Concentration polarization -- 8.2.3.1 Internal concentration polarization -- 8.2.3.2 External concentration polarization -- 8.3 Membrane development -- 8.3.1 Performance of reverse osmosis flat sheet membranes -- 8.3.2 Performance of forward osmosis flat sheet membranes -- 8.3.3 Performance of thin-film composite flat sheet membranes -- 8.3.4 Performance of nanofiber supported flat sheet membranes -- 8.3.5 Performance of hollow-fiber membranes -- 8.4 Applications in seawater and wastewater treatment. , 8.4.1 Individual pressure-retarded osmosis pilot plant -- 8.4.2 Hybrid pressure-retarded osmosis processes -- 8.4.2.1 Reverse osmosis-pressure-retarded osmosis system -- 8.4.2.2 Pressure-retarded osmosis-forward osmosis system -- 8.4.2.3 Pressure-retarded osmosis-membrane distillation system -- 8.4.2.4 Nanofiltration-pressure-retarded osmosis system -- 8.5 Conclusion and future research needs -- References -- 9 Osmotic distillation and osmotic membrane distillation for the treatment of different feed solutions -- 9.1 Introduction -- 9.2 Membranes used in osmotic distillation and osmotic membrane distillation processes -- 9.3 Osmotic solutions used in osmotic distillation and osmotic membrane distillation processes -- 9.4 Mechanism of transport in OD and OMD: Temperature polarization, concentration polarization, and theoretical models -- 9.4.1 Mass transfer through the membrane -- 9.4.2 Heat transfer in osmotic distillation and osmotic membrane distillation -- 9.4.3 Heat and mass transfer boundary layers: Temperature and concentration polarization effects in OD and OMD -- 9.5 OD and OMD applications and effects of different involved operating parameters -- 9.5.1 Temperature effect -- 9.5.2 Flowrate effect -- 9.5.3 Osmotic solution effect -- 9.6 Conclusion -- References -- 10 Thermo-osmosis -- 10.1 Introduction and a brief historical review -- 10.2 Membranes for thermo-osmosis -- 10.3 Electrolyte solutions used in thermo-osmosis -- 10.4 Theoretical studies developed for thermo-osmosis -- 10.4.1 Thermo-osmosis and linear irreversible thermodynamics processes -- 10.4.2 Thermo-osmosis using intermolecular interactions -- 10.4.3 Thermo-osmosis for energy conversion -- 10.5 Applications of thermo-osmosis process -- References -- 11 The applications of integrated osmosis processes for desalination and wastewater treatment -- 11.1 Introduction. , 11.2 Osmosis processes -- 11.2.1 Integration of osmosis processes -- 11.3 Integrated osmosis process for desalination -- 11.3.1 Integration of reverse osmosis process -- 11.3.1.1 Reverse osmosis-adsorption and reverse osmosis-nanofiltration -- 11.3.1.2 Microfiltration-reverse osmosis, ultrafiltration-reverse osmosis, nanofiltration-reverse osmosis -- 11.3.1.3 Reverse osmosis-pressure-retarded osmosis -- 11.3.2 Integration of forward osmosis process -- 11.3.2.1 Forward osmosis-reverse osmosis -- 11.3.2.2 Forward osmosis-membrane distillation -- 11.3.2.3 Forward osmosis-ultrafiltration and forward osmosis-nanofiltration -- 11.3.3 Integration of pressure-retarded osmosis process -- 11.3.3.1 Pressure-retarded osmosis-reverse osmosis -- 11.3.3.2 Pressure-retarded osmosis-membrane distillation -- 11.4 Integrated osmosis process for wastewater treatment -- 11.4.1 Integration of reverse osmosis process -- 11.4.1.1 Microfiltration-reverse osmosis, ultrafiltration-reverse osmosis, nanofiltration-reverse osmosis -- 11.4.2 Integration of forward osmosis process -- 11.4.2.1 Forward osmosis-reverse osmosis -- 11.4.2.2 Forward osmosis-membrane distillation -- 11.4.2.3 Forward osmosis-nanofiltration -- 11.4.3 Integration of pressure-retarded osmosis process -- 11.4.3.1 Pressure-retarded osmosis-reverse osmosis -- 11.4.3.2 Ultrafiltration-pressure-retarded osmosis, nanofiltration-pressure-retarded osmosis -- 11.5 Future outlook and conclusion -- Acknowledgments -- References -- 12 Development and implementations of integrated osmosis system -- 12.1 Introduction -- 12.2 Development of IOS -- 12.2.1 Reverse osmosis-forward osmosis -- 12.2.2 Reverse osmosis-membrane distillation -- 12.2.3 Forward osmosis-membrane distillation -- 12.3 Implementation of IOS -- 12.3.1 Integrated FO-RO system -- 12.3.2 Integrated RO-MD system -- 12.3.3 Integrated FO-MD system. , 12.4 Conclusion and future research directions.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Water. ; Hydrology. ; Nanochemistry. ; Environmental policy. ; Environmental law, International.
    Description / Table of Contents: 1. Emerging water recovery processes from dew and light rain -- 2. Capacitive Deionization: A promising water treatment and desalination technology -- 3. Hydrophobic ceramic hollow fiber membrane: Fabrication and potential use in membrane distillation for desalination -- 4. Metal-organic frameworks as emerging materials for desalination -- 5. Nanofiber-based forward osmosis membrane for desalination -- 6. Recent progress and trends in water pollutant monitoring with smart devices -- 7. Water contamination in fish farms -- 8. Advanced Oxidation Processes -- 9. Fenton Related Advanced Oxidation Processes (AOPs) for water treatment -- 10. Prospects and challenges of electrooxidation and related technologies for the removal of pollutants from contaminated water and soils -- 11. Porous composite catalysts for the removal of water organic pollutants: a materials chemist perspective -- 12. Advanced treatment of water polluted by hexavalent chromium -- 13. Microplastic and nanoplastic removal efficiency with current and innovative water technologies -- 14. MEMBRANE BIOREACTOR FOR SEWAGE TREATMENT -- 15. ELECTROCOAGULATION -- 16. Removal of organochlorine pesticides from soil and water -- 17. Recent Patents and modern industrial devices for clean water.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(VIII, 285 p. 124 illus., 98 illus. in color.)
    Edition: 1st ed. 2024.
    ISBN: 9783031482281
    Series Statement: Advances in Science, Technology & Innovation, IEREK Interdisciplinary Series for Sustainable Development
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...