GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Osmosis. ; Separation (Technology). ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (389 pages)
    Edition: 1st ed.
    ISBN: 9780128231883
    DDC: 660.2842
    Language: English
    Note: Front Cover -- Osmosis Engineering -- Copyright Page -- Contents -- List of contributors -- Biographies -- Preface -- 1 Basic principles of osmosis and osmotic pressure -- 1.1 Introduction -- 1.2 What is osmotic pressure? -- 1.3 Relation of osmotic pressure to other colligative properties -- 1.3.1 Vapor pressure depression -- 1.3.2 Freezing point depression -- 1.3.3 Boiling point elevation -- 1.4 Origins of osmotic pressure in solution -- 1.5 Osmotic flow -- 1.6 Reflection coefficient -- Acknowledgement -- References -- 2 Fundamentals and application of reverse osmosis membrane processes -- 2.1 Introduction -- 2.2 Principles of RO -- 2.2.1 Definition of osmotic pressure and RO -- 2.2.2 Theoretical minimum energy for separation from osmotic pressure -- 2.2.3 Permeation mechanism and equations in the RO process -- 2.2.4 Concentration polarization -- 2.2.5 Mass balance and pressure drop equations in the RO process -- 2.2.6 Energy consumption in the RO process -- 2.3 RO system and design -- 2.3.1 Single-stage/pass BWRO -- 2.3.2 Two/multistage BWRO -- 2.3.3 Single-stage/pass SWRO -- 2.3.4 Two-stage SWRO -- 2.3.5 Two-pass SWRO -- 2.3.5.1 Full two pass -- 2.3.5.2 Partial second pass -- 2.3.5.3 Split partial second pass -- 2.3.6 Internally staged design -- 2.3.7 Pressure-center design -- 2.4 RO fouling -- 2.4.1 Particulate/colloidal fouling -- 2.4.2 Organic fouling -- 2.4.3 Biofouling -- 2.4.4 Scaling -- 2.5 Detection of RO fouling potential -- 2.5.1 Silt density index -- 2.5.2 Modified fouling index -- 2.6 Mitigation of RO fouling -- 2.6.1 Pretreatment processes -- 2.6.2 Membrane maintenance -- Acknowledgment -- References -- 3 Principles of nanofiltration membrane processes -- 3.1 Introduction -- 3.2 Basic principle of NF membrane separation process -- 3.2.1 Steric effect -- 3.2.2 Donnan effect -- 3.2.3 Dielectric effect -- 3.2.4 Transport effect. , 3.2.5 Adsorption effect -- 3.3 Synthesis and modification of NF membrane -- 3.3.1 Phase inversion -- 3.3.2 Interfacial polymerization -- 3.3.2.1 Monomer -- 3.3.2.2 Additives -- 3.3.2.3 Others -- 3.3.3 Grafting polymerization -- 3.3.3.1 UV/photo-grafting -- 3.3.3.2 EB irradiation -- 3.3.3.3 Plasma treatment -- 3.3.3.4 Layer-by-layer -- 3.4 Design and operation of NF process -- 3.4.1 Module design -- 3.4.2 Operation -- 3.5 Limitation of the NF membrane applications -- 3.5.1 Concentration polarization and membrane fouling -- 3.5.2 Factors affecting membrane fouling -- 3.5.3 Fouling mitigation -- 3.5.3.1 Passive fouling control -- 3.5.3.2 Active fouling control -- 3.6 Conclusions -- References -- 4 Recent development in nanofiltration process applications -- 4.1 Introduction -- 4.2 Applications of NF membrane process -- 4.2.1 Water and wastewater -- 4.2.2 Desalination -- 4.2.3 Food industry -- 4.2.4 Biorefinery applications -- 4.2.5 Organic solvent NF -- 4.3 Conclusions -- References -- 5 Principles of forward osmosis -- 5.1 Introduction -- 5.2 Water flux in FO -- 5.3 Practical challenges in FO process -- 5.3.1 Concentration polarization -- 5.3.1.1 External concentration polarization -- 5.3.1.2 Internal concentration polarization -- 5.3.2 Reverse solute flux -- Acknowledgments -- References -- 6 Recent developments in forward osmosis and its implication in expanding applications -- 6.1 Introduction -- 6.2 Forward osmosis -- 6.2.1 Theoretical background -- 6.2.2 Process description -- 6.3 Technological factors -- 6.3.1 Forward osmosis membrane -- 6.3.2 Draw solution -- 6.4 Understanding of fouling in forward osmosis -- 6.4.1 Operation without hydraulic pressure -- 6.4.2 Bidirectional diffusion -- 6.4.3 Fouling control and cleaning in forward osmosis -- 6.5 Exploiting advantages of forward osmosis in its applications. , 6.5.1 Feed concentration process with high water recovery -- 6.5.1.1 High-quality product -- 6.5.1.2 Effective resource recovery -- 6.5.1.3 Minimal environmental impact -- 6.5.2 Draw dilution process with lower energy consumption -- 6.5.2.1 Stand-alone forward osmosis system: direct use -- 6.5.2.2 Hybrid forward osmosis systems -- 6.5.2.2.1 Indirect desalting process along with wastewater reclamation -- 6.5.2.2.2 Direct desalting process for draw solute recovery -- 6.6 Conclusion and perspectives -- Acknowledgment -- References -- 7 Principle and theoretical background of pressure-retarded osmosis process -- 7.1 Introduction -- 7.2 Theory and modeling of osmotic pressure -- 7.2.1 Pitzer model for osmotic pressure -- 7.2.2 Van Laar's model for osmotic pressure -- 7.2.3 Water and solute activities -- 7.2.4 Newton-Raphson method for osmotic pressure -- 7.3 Osmotic power generation -- 7.3.1 Van't Hoff model for Gibbs free energy -- 7.3.2 Piston model for Gibbs energy and energy density -- 7.4 Dual- and multistage pressure-retarded osmosis process -- Acknowledgment -- References -- 8 Application of PRO process for seawater and wastewater treatment: assessment of membrane performance -- 8.1 Introduction -- 8.2 Modeling pressure-retarded osmosis process -- 8.2.1 Water flux and extractable power -- 8.2.2 Reverse solute flux -- 8.2.3 Concentration polarization -- 8.2.3.1 Internal concentration polarization -- 8.2.3.2 External concentration polarization -- 8.3 Membrane development -- 8.3.1 Performance of reverse osmosis flat sheet membranes -- 8.3.2 Performance of forward osmosis flat sheet membranes -- 8.3.3 Performance of thin-film composite flat sheet membranes -- 8.3.4 Performance of nanofiber supported flat sheet membranes -- 8.3.5 Performance of hollow-fiber membranes -- 8.4 Applications in seawater and wastewater treatment. , 8.4.1 Individual pressure-retarded osmosis pilot plant -- 8.4.2 Hybrid pressure-retarded osmosis processes -- 8.4.2.1 Reverse osmosis-pressure-retarded osmosis system -- 8.4.2.2 Pressure-retarded osmosis-forward osmosis system -- 8.4.2.3 Pressure-retarded osmosis-membrane distillation system -- 8.4.2.4 Nanofiltration-pressure-retarded osmosis system -- 8.5 Conclusion and future research needs -- References -- 9 Osmotic distillation and osmotic membrane distillation for the treatment of different feed solutions -- 9.1 Introduction -- 9.2 Membranes used in osmotic distillation and osmotic membrane distillation processes -- 9.3 Osmotic solutions used in osmotic distillation and osmotic membrane distillation processes -- 9.4 Mechanism of transport in OD and OMD: Temperature polarization, concentration polarization, and theoretical models -- 9.4.1 Mass transfer through the membrane -- 9.4.2 Heat transfer in osmotic distillation and osmotic membrane distillation -- 9.4.3 Heat and mass transfer boundary layers: Temperature and concentration polarization effects in OD and OMD -- 9.5 OD and OMD applications and effects of different involved operating parameters -- 9.5.1 Temperature effect -- 9.5.2 Flowrate effect -- 9.5.3 Osmotic solution effect -- 9.6 Conclusion -- References -- 10 Thermo-osmosis -- 10.1 Introduction and a brief historical review -- 10.2 Membranes for thermo-osmosis -- 10.3 Electrolyte solutions used in thermo-osmosis -- 10.4 Theoretical studies developed for thermo-osmosis -- 10.4.1 Thermo-osmosis and linear irreversible thermodynamics processes -- 10.4.2 Thermo-osmosis using intermolecular interactions -- 10.4.3 Thermo-osmosis for energy conversion -- 10.5 Applications of thermo-osmosis process -- References -- 11 The applications of integrated osmosis processes for desalination and wastewater treatment -- 11.1 Introduction. , 11.2 Osmosis processes -- 11.2.1 Integration of osmosis processes -- 11.3 Integrated osmosis process for desalination -- 11.3.1 Integration of reverse osmosis process -- 11.3.1.1 Reverse osmosis-adsorption and reverse osmosis-nanofiltration -- 11.3.1.2 Microfiltration-reverse osmosis, ultrafiltration-reverse osmosis, nanofiltration-reverse osmosis -- 11.3.1.3 Reverse osmosis-pressure-retarded osmosis -- 11.3.2 Integration of forward osmosis process -- 11.3.2.1 Forward osmosis-reverse osmosis -- 11.3.2.2 Forward osmosis-membrane distillation -- 11.3.2.3 Forward osmosis-ultrafiltration and forward osmosis-nanofiltration -- 11.3.3 Integration of pressure-retarded osmosis process -- 11.3.3.1 Pressure-retarded osmosis-reverse osmosis -- 11.3.3.2 Pressure-retarded osmosis-membrane distillation -- 11.4 Integrated osmosis process for wastewater treatment -- 11.4.1 Integration of reverse osmosis process -- 11.4.1.1 Microfiltration-reverse osmosis, ultrafiltration-reverse osmosis, nanofiltration-reverse osmosis -- 11.4.2 Integration of forward osmosis process -- 11.4.2.1 Forward osmosis-reverse osmosis -- 11.4.2.2 Forward osmosis-membrane distillation -- 11.4.2.3 Forward osmosis-nanofiltration -- 11.4.3 Integration of pressure-retarded osmosis process -- 11.4.3.1 Pressure-retarded osmosis-reverse osmosis -- 11.4.3.2 Ultrafiltration-pressure-retarded osmosis, nanofiltration-pressure-retarded osmosis -- 11.5 Future outlook and conclusion -- Acknowledgments -- References -- 12 Development and implementations of integrated osmosis system -- 12.1 Introduction -- 12.2 Development of IOS -- 12.2.1 Reverse osmosis-forward osmosis -- 12.2.2 Reverse osmosis-membrane distillation -- 12.2.3 Forward osmosis-membrane distillation -- 12.3 Implementation of IOS -- 12.3.1 Integrated FO-RO system -- 12.3.2 Integrated RO-MD system -- 12.3.3 Integrated FO-MD system. , 12.4 Conclusion and future research directions.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...