GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier,
    Schlagwort(e): Osmosis. ; Separation (Technology). ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (389 pages)
    Ausgabe: 1st ed.
    ISBN: 9780128231883
    DDC: 660.2842
    Sprache: Englisch
    Anmerkung: Front Cover -- Osmosis Engineering -- Copyright Page -- Contents -- List of contributors -- Biographies -- Preface -- 1 Basic principles of osmosis and osmotic pressure -- 1.1 Introduction -- 1.2 What is osmotic pressure? -- 1.3 Relation of osmotic pressure to other colligative properties -- 1.3.1 Vapor pressure depression -- 1.3.2 Freezing point depression -- 1.3.3 Boiling point elevation -- 1.4 Origins of osmotic pressure in solution -- 1.5 Osmotic flow -- 1.6 Reflection coefficient -- Acknowledgement -- References -- 2 Fundamentals and application of reverse osmosis membrane processes -- 2.1 Introduction -- 2.2 Principles of RO -- 2.2.1 Definition of osmotic pressure and RO -- 2.2.2 Theoretical minimum energy for separation from osmotic pressure -- 2.2.3 Permeation mechanism and equations in the RO process -- 2.2.4 Concentration polarization -- 2.2.5 Mass balance and pressure drop equations in the RO process -- 2.2.6 Energy consumption in the RO process -- 2.3 RO system and design -- 2.3.1 Single-stage/pass BWRO -- 2.3.2 Two/multistage BWRO -- 2.3.3 Single-stage/pass SWRO -- 2.3.4 Two-stage SWRO -- 2.3.5 Two-pass SWRO -- 2.3.5.1 Full two pass -- 2.3.5.2 Partial second pass -- 2.3.5.3 Split partial second pass -- 2.3.6 Internally staged design -- 2.3.7 Pressure-center design -- 2.4 RO fouling -- 2.4.1 Particulate/colloidal fouling -- 2.4.2 Organic fouling -- 2.4.3 Biofouling -- 2.4.4 Scaling -- 2.5 Detection of RO fouling potential -- 2.5.1 Silt density index -- 2.5.2 Modified fouling index -- 2.6 Mitigation of RO fouling -- 2.6.1 Pretreatment processes -- 2.6.2 Membrane maintenance -- Acknowledgment -- References -- 3 Principles of nanofiltration membrane processes -- 3.1 Introduction -- 3.2 Basic principle of NF membrane separation process -- 3.2.1 Steric effect -- 3.2.2 Donnan effect -- 3.2.3 Dielectric effect -- 3.2.4 Transport effect. , 3.2.5 Adsorption effect -- 3.3 Synthesis and modification of NF membrane -- 3.3.1 Phase inversion -- 3.3.2 Interfacial polymerization -- 3.3.2.1 Monomer -- 3.3.2.2 Additives -- 3.3.2.3 Others -- 3.3.3 Grafting polymerization -- 3.3.3.1 UV/photo-grafting -- 3.3.3.2 EB irradiation -- 3.3.3.3 Plasma treatment -- 3.3.3.4 Layer-by-layer -- 3.4 Design and operation of NF process -- 3.4.1 Module design -- 3.4.2 Operation -- 3.5 Limitation of the NF membrane applications -- 3.5.1 Concentration polarization and membrane fouling -- 3.5.2 Factors affecting membrane fouling -- 3.5.3 Fouling mitigation -- 3.5.3.1 Passive fouling control -- 3.5.3.2 Active fouling control -- 3.6 Conclusions -- References -- 4 Recent development in nanofiltration process applications -- 4.1 Introduction -- 4.2 Applications of NF membrane process -- 4.2.1 Water and wastewater -- 4.2.2 Desalination -- 4.2.3 Food industry -- 4.2.4 Biorefinery applications -- 4.2.5 Organic solvent NF -- 4.3 Conclusions -- References -- 5 Principles of forward osmosis -- 5.1 Introduction -- 5.2 Water flux in FO -- 5.3 Practical challenges in FO process -- 5.3.1 Concentration polarization -- 5.3.1.1 External concentration polarization -- 5.3.1.2 Internal concentration polarization -- 5.3.2 Reverse solute flux -- Acknowledgments -- References -- 6 Recent developments in forward osmosis and its implication in expanding applications -- 6.1 Introduction -- 6.2 Forward osmosis -- 6.2.1 Theoretical background -- 6.2.2 Process description -- 6.3 Technological factors -- 6.3.1 Forward osmosis membrane -- 6.3.2 Draw solution -- 6.4 Understanding of fouling in forward osmosis -- 6.4.1 Operation without hydraulic pressure -- 6.4.2 Bidirectional diffusion -- 6.4.3 Fouling control and cleaning in forward osmosis -- 6.5 Exploiting advantages of forward osmosis in its applications. , 6.5.1 Feed concentration process with high water recovery -- 6.5.1.1 High-quality product -- 6.5.1.2 Effective resource recovery -- 6.5.1.3 Minimal environmental impact -- 6.5.2 Draw dilution process with lower energy consumption -- 6.5.2.1 Stand-alone forward osmosis system: direct use -- 6.5.2.2 Hybrid forward osmosis systems -- 6.5.2.2.1 Indirect desalting process along with wastewater reclamation -- 6.5.2.2.2 Direct desalting process for draw solute recovery -- 6.6 Conclusion and perspectives -- Acknowledgment -- References -- 7 Principle and theoretical background of pressure-retarded osmosis process -- 7.1 Introduction -- 7.2 Theory and modeling of osmotic pressure -- 7.2.1 Pitzer model for osmotic pressure -- 7.2.2 Van Laar's model for osmotic pressure -- 7.2.3 Water and solute activities -- 7.2.4 Newton-Raphson method for osmotic pressure -- 7.3 Osmotic power generation -- 7.3.1 Van't Hoff model for Gibbs free energy -- 7.3.2 Piston model for Gibbs energy and energy density -- 7.4 Dual- and multistage pressure-retarded osmosis process -- Acknowledgment -- References -- 8 Application of PRO process for seawater and wastewater treatment: assessment of membrane performance -- 8.1 Introduction -- 8.2 Modeling pressure-retarded osmosis process -- 8.2.1 Water flux and extractable power -- 8.2.2 Reverse solute flux -- 8.2.3 Concentration polarization -- 8.2.3.1 Internal concentration polarization -- 8.2.3.2 External concentration polarization -- 8.3 Membrane development -- 8.3.1 Performance of reverse osmosis flat sheet membranes -- 8.3.2 Performance of forward osmosis flat sheet membranes -- 8.3.3 Performance of thin-film composite flat sheet membranes -- 8.3.4 Performance of nanofiber supported flat sheet membranes -- 8.3.5 Performance of hollow-fiber membranes -- 8.4 Applications in seawater and wastewater treatment. , 8.4.1 Individual pressure-retarded osmosis pilot plant -- 8.4.2 Hybrid pressure-retarded osmosis processes -- 8.4.2.1 Reverse osmosis-pressure-retarded osmosis system -- 8.4.2.2 Pressure-retarded osmosis-forward osmosis system -- 8.4.2.3 Pressure-retarded osmosis-membrane distillation system -- 8.4.2.4 Nanofiltration-pressure-retarded osmosis system -- 8.5 Conclusion and future research needs -- References -- 9 Osmotic distillation and osmotic membrane distillation for the treatment of different feed solutions -- 9.1 Introduction -- 9.2 Membranes used in osmotic distillation and osmotic membrane distillation processes -- 9.3 Osmotic solutions used in osmotic distillation and osmotic membrane distillation processes -- 9.4 Mechanism of transport in OD and OMD: Temperature polarization, concentration polarization, and theoretical models -- 9.4.1 Mass transfer through the membrane -- 9.4.2 Heat transfer in osmotic distillation and osmotic membrane distillation -- 9.4.3 Heat and mass transfer boundary layers: Temperature and concentration polarization effects in OD and OMD -- 9.5 OD and OMD applications and effects of different involved operating parameters -- 9.5.1 Temperature effect -- 9.5.2 Flowrate effect -- 9.5.3 Osmotic solution effect -- 9.6 Conclusion -- References -- 10 Thermo-osmosis -- 10.1 Introduction and a brief historical review -- 10.2 Membranes for thermo-osmosis -- 10.3 Electrolyte solutions used in thermo-osmosis -- 10.4 Theoretical studies developed for thermo-osmosis -- 10.4.1 Thermo-osmosis and linear irreversible thermodynamics processes -- 10.4.2 Thermo-osmosis using intermolecular interactions -- 10.4.3 Thermo-osmosis for energy conversion -- 10.5 Applications of thermo-osmosis process -- References -- 11 The applications of integrated osmosis processes for desalination and wastewater treatment -- 11.1 Introduction. , 11.2 Osmosis processes -- 11.2.1 Integration of osmosis processes -- 11.3 Integrated osmosis process for desalination -- 11.3.1 Integration of reverse osmosis process -- 11.3.1.1 Reverse osmosis-adsorption and reverse osmosis-nanofiltration -- 11.3.1.2 Microfiltration-reverse osmosis, ultrafiltration-reverse osmosis, nanofiltration-reverse osmosis -- 11.3.1.3 Reverse osmosis-pressure-retarded osmosis -- 11.3.2 Integration of forward osmosis process -- 11.3.2.1 Forward osmosis-reverse osmosis -- 11.3.2.2 Forward osmosis-membrane distillation -- 11.3.2.3 Forward osmosis-ultrafiltration and forward osmosis-nanofiltration -- 11.3.3 Integration of pressure-retarded osmosis process -- 11.3.3.1 Pressure-retarded osmosis-reverse osmosis -- 11.3.3.2 Pressure-retarded osmosis-membrane distillation -- 11.4 Integrated osmosis process for wastewater treatment -- 11.4.1 Integration of reverse osmosis process -- 11.4.1.1 Microfiltration-reverse osmosis, ultrafiltration-reverse osmosis, nanofiltration-reverse osmosis -- 11.4.2 Integration of forward osmosis process -- 11.4.2.1 Forward osmosis-reverse osmosis -- 11.4.2.2 Forward osmosis-membrane distillation -- 11.4.2.3 Forward osmosis-nanofiltration -- 11.4.3 Integration of pressure-retarded osmosis process -- 11.4.3.1 Pressure-retarded osmosis-reverse osmosis -- 11.4.3.2 Ultrafiltration-pressure-retarded osmosis, nanofiltration-pressure-retarded osmosis -- 11.5 Future outlook and conclusion -- Acknowledgments -- References -- 12 Development and implementations of integrated osmosis system -- 12.1 Introduction -- 12.2 Development of IOS -- 12.2.1 Reverse osmosis-forward osmosis -- 12.2.2 Reverse osmosis-membrane distillation -- 12.2.3 Forward osmosis-membrane distillation -- 12.3 Implementation of IOS -- 12.3.1 Integrated FO-RO system -- 12.3.2 Integrated RO-MD system -- 12.3.3 Integrated FO-MD system. , 12.4 Conclusion and future research directions.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    La Vergne :Royal Society of Chemistry, The,
    Schlagwort(e): Photocatalysis. ; Nanocomposites (Materials)-Environmental aspects. ; Nanostructured materials-Environmental aspects. ; Carbon dioxide mitigation. ; Electronic books.
    Beschreibung / Inhaltsverzeichnis: Looking at current research as well as future trends Functional Hybrid Nanomaterials for Environmental Remediation is a useful resource for nanomaterial scientists and environmental chemists.
    Materialart: Online-Ressource
    Seiten: 1 online resource (321 pages)
    Ausgabe: 1st ed.
    ISBN: 9781839165283
    Serie: Issn Series
    DDC: 628.5028/4
    Sprache: Englisch
    Anmerkung: Cover -- Functional Hybrid Nanomaterials for Environmental Remediation -- Preface -- Contents -- Chapter 1 - The Role of Functional Nanomaterials for Wastewater Remediation -- 1.1 Introduction -- 1.2 Nanomaterials -- 1.2.1 Metal and Metal Oxide- based Nanomaterials -- 1.2.2 Carbon- based Nanomaterials -- 1.2.3 Organic Framework -- 1.2.4 Hybrid Nanomaterials -- 1.3 Roles and Applications of Functional Nanomaterials for Wastewater Treatment -- 1.3.1 Photocatalysts -- 1.3.2 Adsorbents -- 1.3.3 Disinfectants -- 1.3.4 Nanocomposite Membranes -- 1.4 Outlook and Conclusions -- Acknowledgements -- References -- Chapter 2 - Synthesis of Functional Hybrid Nanomaterials Using Green Chemistry Approaches -- 2.1 Introduction -- 2.2 Chemistry of Hybrid Materials and Synthesis Procedures -- 2.2.1 Inorganic Constituents -- 2.2.2 Organic Constituents -- 2.2.3 Hybrid Interface -- 2.3 General Preparation Techniques for Hybrids -- 2.4 Functional Hybrid Nano- architectures -- 2.4.1 Copolymer Micelles as 0D Nano- structures -- 2.4.2 Preparation of 1D Nano- structures -- 2.4.3 Preparation of 2D Nano- structures -- 2.4.4 Preparation of 3D Nano- objects -- 2.5 Using Surfactants to Prepare Mesoporous Functionalized Materials -- 2.5.1 Functionalization of Pores -- 2.5.2 Framework Functionalization in Mesoporous Materials -- 2.5.3 Pores and Framework Functionalization -- 2.6 Preparation of Lamellar Functional Materials Via Self- assembly -- 2.6.1 Weak Interactions -- 2.6.2 Functionalized Layered Materials -- 2.6.3 Monosilylated Precursor -- 2.7 Reasonable Design of Hybrid Structures -- 2.8 Novel Porous Hybrid Materials -- 2.8.1 Periodically Organized Mesoporous Hybrid Materials (POMHM) -- 2.8.2 MOFs -- 2.8.2.1 Modification of MOFs -- 2.8.2.1.1 New Techniques in PSM.Many studies have concentrated on recognizing organic precursors and reactions that can be utilized in PSM. , 2.9 Magnetic Hybrid Nano- materials -- 2.10 Commercialization and Future Prospectives -- 2.11 Conclusions -- References -- Chapter 3 - Characterization of Functional Hybrid Nanomaterials -- 3.1 Introduction -- 3.2 IR- based Techniques -- 3.2.1 Raman Spectroscopy -- 3.2.2 Infrared Spectroscopy -- 3.2.3 Nuclear Magnetic Resonance (NMR) -- 3.3 X- Ray Based Tools -- 3.4 Brunauer-Emmett-Teller (BET) -- 3.5 Thermal Gravimetric Analysis (TGA) -- 3.6 Low- energy Ion Scattering (LEIS) -- 3.7 Dynamic Light Scattering (DLS) -- 3.8 Mass Spectrometry (MS) -- 3.9 Mechanical Properties -- 3.10 Morphological Characterization Method -- 3.10.1 Electron Microscopy -- 3.10.1.1 Scanning Electron Microscopy -- 3.10.1.1.1 Conventional SEM.A conventional SEM can provide accurate statistical data for estimating the particle size and the size distribu... -- 3.10.1.1.2 Environmental SEM.ESEM is one of the latest innovations in SEM, introduced to enable wet, uncoated samples to be analyzed. It is... -- 3.10.1.1.3 Field Emission Scanning Electron Microscopy.FESEM is an advanced version of SEM as the main role remains to deliver topographica... -- 3.10.1.2 Transmission Electron Microscopy -- 3.10.1.2.1 High- resolution Transmission Electron Microscopy.In contrast with the standard operating mode, HRTEM uses a very large objectiv... -- 3.10.1.2.2 Selected Area Electron Diffraction.Another important function of TEM is to provide the image of lattice points of a material thr... -- 3.10.2 Spectroscopic Particle Size Analysis -- 3.10.2.1 Laser Diffraction -- 3.10.2.2 Dynamic Light Scattering -- 3.11 Conclusion -- References -- Chapter 4 - Nanomaterials and Their Modification for Environmental Remediation -- 4.1 Introduction -- 4.2 Nanomaterials for Environmental Remediation -- 4.3 Zero Dimensional (0D) Nanomaterials for Environmental Remediation -- 4.3.1 Doped 0D Nanomaterials. , 4.3.1.1 Non- metal Doped 0D Nanomaterials -- 4.3.1.2 Metal- doped 0D Nanomaterials -- 4.3.2 Composites of 0D Nanomaterials -- 4.3.2.1 Core-Shell Nanocomposites -- 4.4 1D Nanomaterials for Environmental Remediation -- 4.4.1 Doped 1D Nanomaterials -- 4.4.1.1 Non- metal- doped 1D Nanomaterials -- 4.4.1.2 Metal- doped 1D Nanomaterials -- 4.4.2 Composites of 1D Nanomaterials -- 4.5 2D NMs for Environmental Remediation -- 4.5.1 Carbon- based 2D NMs -- 4.5.1.1 Composites of Carbon- based 2D NMs -- 4.6 Conclusions and Outlook -- Acknowledgements -- References -- Chapter 5 - Polymer- based Nanocomposites for Environmental Remediation -- 5.1 Introduction -- 5.2 Polymer- based Nanocomposite -- 5.2.1 Membranes -- 5.2.1.1 Carbon- based Nanocomposite Polymeric Membrane -- 5.2.1.2 Metal and Non- metal- based Nanocomposite Polymeric Membrane -- 5.2.1.3 Hybrid Nanocomposite Polymeric Membrane -- 5.2.2 Adsorbents -- 5.2.2.1 Natural Polymer- based Adsorbents -- 5.2.2.2 Synthetic Polymer- based Adsorbents -- 5.2.3 Aerogels and Hydrogels -- 5.2.3.1 Nanocomposite Hydrogel -- 5.2.3.2 Nanocomposite Aerogel -- 5.3 Conclusion -- Acknowledgements -- References -- Chapter 6 - Magnetic Nanocomposites for Environmental Remediation -- 6.1 Introduction -- 6.2 Structure and Magnetic Characteristics of MNPs -- 6.2.1 Physical Properties -- 6.2.2 Magnetic Properties -- 6.2.3 Structural Properties -- 6.2.4 Thermodynamic Properties -- 6.2.5 Surface Properties -- 6.3 Nanoparticles Fabrication -- 6.3.1 Top- down Methods -- 6.3.1.1 Mechanical Milling -- 6.3.1.2 Chemical Etching -- 6.3.1.3 Laser Ablation -- 6.3.1.4 Sputtering -- 6.3.2 Bottom- up Methods -- 6.3.2.1 Chemical Vapour Deposition (CVD) -- 6.3.2.2 Sol-Gel Process -- 6.3.2.3 Hydrothermal Syntheses -- 6.3.2.4 Co- Precipitation -- 6.3.2.5 Spray and Laser Pyrolysis -- 6.3.2.6 Combustion -- 6.3.2.7 Microwave -- 6.3.2.8 Microemulsion. , 6.3.2.9 Green Synthesis -- 6.4 Identification and Characterization Techniques -- 6.5 Environmental Applications of Magnetic Nanoparticles -- 6.5.1 Adsorption of Environmental Pollutants -- 6.5.2 Catalytic Degradation of Environmental Pollutants -- 6.5.3 Sensor- based Detection of Environmental Pollutants -- 6.5.4 Coagulants for Environmental Pollutants Aggregation -- 6.5.5 Transformation of Environmental Pollutants -- 6.5.6 Remediation of Bacterial Contaminants -- 6.5.7 Remediation of Organic Contaminants -- 6.5.8 Remediation of Radionuclides -- 6.5.9 Remediation of Inorganic Contaminants and Heavy Metals -- 6.6 Challenges and Environmental Impacts -- References -- Chapter 7 - Photocatalytic Nanocomposites for Environmental Remediation -- 7.1 Introduction -- 7.2 Application of Photocatalysis in Environmental Remediation -- 7.2.1 Water and Wastewater Treatment -- 7.2.2 Air Pollution -- 7.3 Nanocomposite Photocatalysts -- 7.4 UV Light Driven Photocatalysts -- 7.4.1 TiO2 Nanoparticles -- 7.4.2 TiO2- doped Materials -- 7.4.3 Non- TiO2 Nanocomposites -- 7.5 Visible Light Driven Photocatalysts -- 7.5.1 TiO2- doped Materials -- 7.5.2 Non- TiO2 Materials -- 7.6 Nanocomposite Photocatalyst- supported Film -- 7.6.1 Membranes -- 7.6.2 Other Supports -- 7.7 Conclusion -- References -- Chapter 8 - Antimicrobial Nanocomposites for Environmental Remediation -- 8.1 Introduction -- 8.2 Environmental Remediation of Antimicrobial Nanocomposites -- 8.3 Preparation of Antimicrobial Nanocomposites -- 8.3.1 Metal Ion/Metal Oxide/Metal Nanoparticle- based Antimicrobial Nanocomposites -- 8.3.2 Polymer- based Antimicrobial Nanocomposites -- 8.3.3 Carbon- based Antimicrobial Nanocomposites -- 8.3.4 Nano- clay- based Antimicrobial Nanocomposites -- 8.3.5 Organic Compound- based Antimicrobial Nanocomposites. , 8.4 Environmental Remediation Applications of Antimicrobial Nanocomposites -- 8.4.1 Coatings -- 8.4.2 Water Treatment -- 8.4.3 Food Packaging and Food Materials -- 8.5 Antimicrobial Nanocomposites for Future Demand -- 8.6 Conclusions -- Acknowledgements -- References -- Chapter 9 - Functional Nanocomposites for Heavy Metal Removal -- 9.1 Introduction -- 9.2 Importance of the Subject -- 9.3 Heavy Metal Removal Methods -- 9.4 Adsorption -- 9.5 Nano- adsorbents -- 9.6 Adsorptive Mixed Matrix Membrane (AMMM) -- 9.7 The Effect of Type of Nano- adsorbents on AMMM Performance -- 9.7.1 Porosity and Thickness -- 9.7.2 Effect of Nano- adsorbents on the Skin Layer Structure -- 9.7.3 Hydrophilic Behavior of Nano- adsorbents -- 9.7.4 AMMM Flux -- 9.7.5 Adsorption Capacity -- 9.7.6 AMMM versus pH, Regeneration, and Leakage -- 9.8 Challenges -- References -- Chapter 10 - Functional Nanocomposites for Groundwater Treatment -- 10.1 Introduction -- 10.2 Removal of Heavy Metal Ions -- 10.2.1 Arsenic -- 10.2.2 Chromium -- 10.2.3 Magnesium -- 10.2.4 Lead -- 10.2.5 Vanadium -- 10.2.6 Caesium -- 10.2.7 Selenium -- 10.2.8 Mercury -- 10.3 Anions -- 10.4 Organic Pollutants -- 10.5 Other Pollutants -- 10.6 Conclusions -- List of Abbreviations -- Acknowledgements -- References -- Chapter 11 - Functional Nanocomposites for Removal of Contaminants of Emerging Concern -- 11.1 Introduction -- 11.2 Contaminants of Emerging Concern (CECs) -- 11.3 Nanotechnology for CECs Removal -- 11.3.1 Nanomaterials -- 11.3.1.1 Inorganic Nanomaterials -- 11.3.1.1.1 Metal- and Metal Oxide- based.These nanomaterials exhibit excellent microbial decontamination with advantages such as high adso... -- 11.3.1.1.2 Silica Materials.These nanomaterials possess advantages for environmental remediation applications such as high surface area, tu... -- 11.3.1.2 Carbon- based Nanomaterials. , 11.3.1.2.1 Graphene Materials.Graphene is a systematic honeycomb network of graphite that in both in its pristine or derivatives forms, suc.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Schlagwort(e): Water. ; Hydrology. ; Nanochemistry. ; Environmental policy. ; Environmental law, International.
    Beschreibung / Inhaltsverzeichnis: 1. Emerging water recovery processes from dew and light rain -- 2. Capacitive Deionization: A promising water treatment and desalination technology -- 3. Hydrophobic ceramic hollow fiber membrane: Fabrication and potential use in membrane distillation for desalination -- 4. Metal-organic frameworks as emerging materials for desalination -- 5. Nanofiber-based forward osmosis membrane for desalination -- 6. Recent progress and trends in water pollutant monitoring with smart devices -- 7. Water contamination in fish farms -- 8. Advanced Oxidation Processes -- 9. Fenton Related Advanced Oxidation Processes (AOPs) for water treatment -- 10. Prospects and challenges of electrooxidation and related technologies for the removal of pollutants from contaminated water and soils -- 11. Porous composite catalysts for the removal of water organic pollutants: a materials chemist perspective -- 12. Advanced treatment of water polluted by hexavalent chromium -- 13. Microplastic and nanoplastic removal efficiency with current and innovative water technologies -- 14. MEMBRANE BIOREACTOR FOR SEWAGE TREATMENT -- 15. ELECTROCOAGULATION -- 16. Removal of organochlorine pesticides from soil and water -- 17. Recent Patents and modern industrial devices for clean water.
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource(VIII, 285 p. 124 illus., 98 illus. in color.)
    Ausgabe: 1st ed. 2024.
    ISBN: 9783031482281
    Serie: Advances in Science, Technology & Innovation, IEREK Interdisciplinary Series for Sustainable Development
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...