GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • San Diego :Elsevier,  (1)
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Osmosis. ; Separation (Technology). ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (389 pages)
    Edition: 1st ed.
    ISBN: 9780128231883
    DDC: 660.2842
    Language: English
    Note: Front Cover -- Osmosis Engineering -- Copyright Page -- Contents -- List of contributors -- Biographies -- Preface -- 1 Basic principles of osmosis and osmotic pressure -- 1.1 Introduction -- 1.2 What is osmotic pressure? -- 1.3 Relation of osmotic pressure to other colligative properties -- 1.3.1 Vapor pressure depression -- 1.3.2 Freezing point depression -- 1.3.3 Boiling point elevation -- 1.4 Origins of osmotic pressure in solution -- 1.5 Osmotic flow -- 1.6 Reflection coefficient -- Acknowledgement -- References -- 2 Fundamentals and application of reverse osmosis membrane processes -- 2.1 Introduction -- 2.2 Principles of RO -- 2.2.1 Definition of osmotic pressure and RO -- 2.2.2 Theoretical minimum energy for separation from osmotic pressure -- 2.2.3 Permeation mechanism and equations in the RO process -- 2.2.4 Concentration polarization -- 2.2.5 Mass balance and pressure drop equations in the RO process -- 2.2.6 Energy consumption in the RO process -- 2.3 RO system and design -- 2.3.1 Single-stage/pass BWRO -- 2.3.2 Two/multistage BWRO -- 2.3.3 Single-stage/pass SWRO -- 2.3.4 Two-stage SWRO -- 2.3.5 Two-pass SWRO -- 2.3.5.1 Full two pass -- 2.3.5.2 Partial second pass -- 2.3.5.3 Split partial second pass -- 2.3.6 Internally staged design -- 2.3.7 Pressure-center design -- 2.4 RO fouling -- 2.4.1 Particulate/colloidal fouling -- 2.4.2 Organic fouling -- 2.4.3 Biofouling -- 2.4.4 Scaling -- 2.5 Detection of RO fouling potential -- 2.5.1 Silt density index -- 2.5.2 Modified fouling index -- 2.6 Mitigation of RO fouling -- 2.6.1 Pretreatment processes -- 2.6.2 Membrane maintenance -- Acknowledgment -- References -- 3 Principles of nanofiltration membrane processes -- 3.1 Introduction -- 3.2 Basic principle of NF membrane separation process -- 3.2.1 Steric effect -- 3.2.2 Donnan effect -- 3.2.3 Dielectric effect -- 3.2.4 Transport effect. , 3.2.5 Adsorption effect -- 3.3 Synthesis and modification of NF membrane -- 3.3.1 Phase inversion -- 3.3.2 Interfacial polymerization -- 3.3.2.1 Monomer -- 3.3.2.2 Additives -- 3.3.2.3 Others -- 3.3.3 Grafting polymerization -- 3.3.3.1 UV/photo-grafting -- 3.3.3.2 EB irradiation -- 3.3.3.3 Plasma treatment -- 3.3.3.4 Layer-by-layer -- 3.4 Design and operation of NF process -- 3.4.1 Module design -- 3.4.2 Operation -- 3.5 Limitation of the NF membrane applications -- 3.5.1 Concentration polarization and membrane fouling -- 3.5.2 Factors affecting membrane fouling -- 3.5.3 Fouling mitigation -- 3.5.3.1 Passive fouling control -- 3.5.3.2 Active fouling control -- 3.6 Conclusions -- References -- 4 Recent development in nanofiltration process applications -- 4.1 Introduction -- 4.2 Applications of NF membrane process -- 4.2.1 Water and wastewater -- 4.2.2 Desalination -- 4.2.3 Food industry -- 4.2.4 Biorefinery applications -- 4.2.5 Organic solvent NF -- 4.3 Conclusions -- References -- 5 Principles of forward osmosis -- 5.1 Introduction -- 5.2 Water flux in FO -- 5.3 Practical challenges in FO process -- 5.3.1 Concentration polarization -- 5.3.1.1 External concentration polarization -- 5.3.1.2 Internal concentration polarization -- 5.3.2 Reverse solute flux -- Acknowledgments -- References -- 6 Recent developments in forward osmosis and its implication in expanding applications -- 6.1 Introduction -- 6.2 Forward osmosis -- 6.2.1 Theoretical background -- 6.2.2 Process description -- 6.3 Technological factors -- 6.3.1 Forward osmosis membrane -- 6.3.2 Draw solution -- 6.4 Understanding of fouling in forward osmosis -- 6.4.1 Operation without hydraulic pressure -- 6.4.2 Bidirectional diffusion -- 6.4.3 Fouling control and cleaning in forward osmosis -- 6.5 Exploiting advantages of forward osmosis in its applications. , 6.5.1 Feed concentration process with high water recovery -- 6.5.1.1 High-quality product -- 6.5.1.2 Effective resource recovery -- 6.5.1.3 Minimal environmental impact -- 6.5.2 Draw dilution process with lower energy consumption -- 6.5.2.1 Stand-alone forward osmosis system: direct use -- 6.5.2.2 Hybrid forward osmosis systems -- 6.5.2.2.1 Indirect desalting process along with wastewater reclamation -- 6.5.2.2.2 Direct desalting process for draw solute recovery -- 6.6 Conclusion and perspectives -- Acknowledgment -- References -- 7 Principle and theoretical background of pressure-retarded osmosis process -- 7.1 Introduction -- 7.2 Theory and modeling of osmotic pressure -- 7.2.1 Pitzer model for osmotic pressure -- 7.2.2 Van Laar's model for osmotic pressure -- 7.2.3 Water and solute activities -- 7.2.4 Newton-Raphson method for osmotic pressure -- 7.3 Osmotic power generation -- 7.3.1 Van't Hoff model for Gibbs free energy -- 7.3.2 Piston model for Gibbs energy and energy density -- 7.4 Dual- and multistage pressure-retarded osmosis process -- Acknowledgment -- References -- 8 Application of PRO process for seawater and wastewater treatment: assessment of membrane performance -- 8.1 Introduction -- 8.2 Modeling pressure-retarded osmosis process -- 8.2.1 Water flux and extractable power -- 8.2.2 Reverse solute flux -- 8.2.3 Concentration polarization -- 8.2.3.1 Internal concentration polarization -- 8.2.3.2 External concentration polarization -- 8.3 Membrane development -- 8.3.1 Performance of reverse osmosis flat sheet membranes -- 8.3.2 Performance of forward osmosis flat sheet membranes -- 8.3.3 Performance of thin-film composite flat sheet membranes -- 8.3.4 Performance of nanofiber supported flat sheet membranes -- 8.3.5 Performance of hollow-fiber membranes -- 8.4 Applications in seawater and wastewater treatment. , 8.4.1 Individual pressure-retarded osmosis pilot plant -- 8.4.2 Hybrid pressure-retarded osmosis processes -- 8.4.2.1 Reverse osmosis-pressure-retarded osmosis system -- 8.4.2.2 Pressure-retarded osmosis-forward osmosis system -- 8.4.2.3 Pressure-retarded osmosis-membrane distillation system -- 8.4.2.4 Nanofiltration-pressure-retarded osmosis system -- 8.5 Conclusion and future research needs -- References -- 9 Osmotic distillation and osmotic membrane distillation for the treatment of different feed solutions -- 9.1 Introduction -- 9.2 Membranes used in osmotic distillation and osmotic membrane distillation processes -- 9.3 Osmotic solutions used in osmotic distillation and osmotic membrane distillation processes -- 9.4 Mechanism of transport in OD and OMD: Temperature polarization, concentration polarization, and theoretical models -- 9.4.1 Mass transfer through the membrane -- 9.4.2 Heat transfer in osmotic distillation and osmotic membrane distillation -- 9.4.3 Heat and mass transfer boundary layers: Temperature and concentration polarization effects in OD and OMD -- 9.5 OD and OMD applications and effects of different involved operating parameters -- 9.5.1 Temperature effect -- 9.5.2 Flowrate effect -- 9.5.3 Osmotic solution effect -- 9.6 Conclusion -- References -- 10 Thermo-osmosis -- 10.1 Introduction and a brief historical review -- 10.2 Membranes for thermo-osmosis -- 10.3 Electrolyte solutions used in thermo-osmosis -- 10.4 Theoretical studies developed for thermo-osmosis -- 10.4.1 Thermo-osmosis and linear irreversible thermodynamics processes -- 10.4.2 Thermo-osmosis using intermolecular interactions -- 10.4.3 Thermo-osmosis for energy conversion -- 10.5 Applications of thermo-osmosis process -- References -- 11 The applications of integrated osmosis processes for desalination and wastewater treatment -- 11.1 Introduction. , 11.2 Osmosis processes -- 11.2.1 Integration of osmosis processes -- 11.3 Integrated osmosis process for desalination -- 11.3.1 Integration of reverse osmosis process -- 11.3.1.1 Reverse osmosis-adsorption and reverse osmosis-nanofiltration -- 11.3.1.2 Microfiltration-reverse osmosis, ultrafiltration-reverse osmosis, nanofiltration-reverse osmosis -- 11.3.1.3 Reverse osmosis-pressure-retarded osmosis -- 11.3.2 Integration of forward osmosis process -- 11.3.2.1 Forward osmosis-reverse osmosis -- 11.3.2.2 Forward osmosis-membrane distillation -- 11.3.2.3 Forward osmosis-ultrafiltration and forward osmosis-nanofiltration -- 11.3.3 Integration of pressure-retarded osmosis process -- 11.3.3.1 Pressure-retarded osmosis-reverse osmosis -- 11.3.3.2 Pressure-retarded osmosis-membrane distillation -- 11.4 Integrated osmosis process for wastewater treatment -- 11.4.1 Integration of reverse osmosis process -- 11.4.1.1 Microfiltration-reverse osmosis, ultrafiltration-reverse osmosis, nanofiltration-reverse osmosis -- 11.4.2 Integration of forward osmosis process -- 11.4.2.1 Forward osmosis-reverse osmosis -- 11.4.2.2 Forward osmosis-membrane distillation -- 11.4.2.3 Forward osmosis-nanofiltration -- 11.4.3 Integration of pressure-retarded osmosis process -- 11.4.3.1 Pressure-retarded osmosis-reverse osmosis -- 11.4.3.2 Ultrafiltration-pressure-retarded osmosis, nanofiltration-pressure-retarded osmosis -- 11.5 Future outlook and conclusion -- Acknowledgments -- References -- 12 Development and implementations of integrated osmosis system -- 12.1 Introduction -- 12.2 Development of IOS -- 12.2.1 Reverse osmosis-forward osmosis -- 12.2.2 Reverse osmosis-membrane distillation -- 12.2.3 Forward osmosis-membrane distillation -- 12.3 Implementation of IOS -- 12.3.1 Integrated FO-RO system -- 12.3.2 Integrated RO-MD system -- 12.3.3 Integrated FO-MD system. , 12.4 Conclusion and future research directions.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...