GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (360 pages)
    Edition: 1st ed.
    ISBN: 9781119891529
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Nanostructured materials-Environmental aspects. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (326 pages)
    Edition: 1st ed.
    ISBN: 9783030632410
    Series Statement: Environmental Chemistry for a Sustainable World Series ; v.59
    DDC: 571.95
    Language: English
    Note: Intro -- Preface -- Contents -- About the Editors -- Contributors -- Chapter 1: Nanotoxicity and Nanoecotoxicity: Introduction, Principles, and Concepts -- 1.1 Introduction -- 1.2 Study of Nanotoxicity and Nanoecotoxicology -- 1.3 Current State of Nanotoxicology and Nanoecotoxicology -- 1.3.1 Economic -- 1.3.2 Environmental -- 1.3.3 Social -- 1.4 Prospects of Market Impact -- 1.5 Safety Issues of Nanotechnology Products -- 1.6 Potential Exposure Pathway -- 1.7 Conclusions -- References -- Chapter 2: Nanomaterials and Human Health -- 2.1 Introduction: Nanomaterials -- 2.1.1 Natural Nanomaterials (NNMs) -- 2.1.2 Engineered Nanomaterials -- 2.2 Applications of Nanomaterials -- 2.3 Exposure Pathways of Nanomaterials -- 2.4 Potential Health Effect of Nanomaterials -- 2.5 Risk Assessment -- 2.6 Summary and Conclusion -- References -- Chapter 3: Safety and Utility of Nanomaterials on Reproduction and Development: An Update of Alternative Methods -- 3.1 Introduction -- 3.2 In Vitro Exposure of Sperm and Other Cells of the Male Gonad -- 3.3 In Vitro Exposure of Eggs and Follicular Cells of the Female Gonad -- 3.3.1 Collection of Oocyte and Follicular Cells of the Female Gonads -- 3.3.2 In Vitro Exposure of Different Types of Ovary Cells -- 3.4 The Placenta: A Differentiated Mother-to-Fetus Biological Barrier in Mammals -- 3.4.1 Alternative Models to Evaluate the Transport Across the Placenta -- 3.4.2 Nanomaterials and Alternative Models of the Placenta -- 3.5 Embryonic Exposure and Embryotoxicity -- 3.5.1 Culture of Early Mammal Embryo -- 3.5.2 Whole Embryo Culture -- 3.5.3 The Multipotent Embryonic Stem Cells -- 3.5.4 Zebrafish Embryo Test -- 3.6 Conclusions -- References -- Chapter 4: Nano-toxicity to Microbes: Potential Implications of Nanomaterials on Microbial Activity -- 4.1 Introduction -- 4.2 Nanomaterials in Environment. , 4.3 Interaction of Nanomaterial with Microbial Communities -- 4.4 Effect of Nanomaterials on Soil Microbial Flora -- 4.5 Effect on Microbial Community Structure and Enzymatic Activities -- 4.5.1 Silver Nanoparticles (Ag NP) -- 4.5.2 Carbon Nanomaterials -- 4.5.3 Copper Oxide Nanoparticles -- 4.5.4 Titanium Oxide Nanoparticles -- 4.5.5 Zinc Oxide Nanoparticles -- 4.5.6 Iron Nanoparticles -- 4.5.7 Silicon and Aluminum Oxide Nanoparticles -- 4.5.8 Nano-Ceria (CeO2) -- 4.6 Effect on Water Microbial Flora -- 4.7 Mechanism of Nanomaterial Toxicity to Microbial Community -- 4.7.1 Reactive Oxygen Species (ROS) Production -- 4.8 Conclusion -- References -- Chapter 5: Nanomaterials Causing Cellular Toxicity and Genotoxicity -- 5.1 Introduction -- 5.1.1 Toxicity of Nanoparticles -- 5.1.2 Nanoparticles of Metallic Substances -- 5.2 Iron Oxide Nanoparticles (FeO) -- 5.3 Zinc Oxide Nanoparticles (ZnO Nanoparticles) -- 5.4 Titanium Dioxide Nanoparticles (TiO2 Nanoparticles) -- 5.4.1 Nanoparticles of Nonmetallic Substances -- 5.5 Conclusions -- References -- Chapter 6: Exploring Microbial Nanotoxicity Against Drug Resistance in Bacteria -- 6.1 Introduction -- 6.2 Effect of Nanoparticles on Drug-Resistant Bacteria -- 6.2.1 Effects of Chemically Synthesized Nanoparticles on Drug-Resistant Bacteria -- 6.2.2 Effect of Biologically Synthesized Nanoparticles on Drug-Resistant Bacteria -- 6.2.3 Effect of Functionalized Nanoparticles on Drug-Resistant Bacteria -- 6.3 Mechanism of Nanoparticle-Mediated Toxicity to Control Antibiotic-Resistant Bacteria -- 6.4 Advances in Addressing Antimicrobial Resistance by Nanoparticle-Mediated Approaches -- 6.5 Conclusions and Future Perspectives -- References -- Chapter 7: Toxicity of Engineered Nanostructures in Aquatic Environments -- 7.1 Introduction to Nanomaterials and Toxicity Aspects. , 7.2 Engineered Nanostructures: Synthesis Methods -- 7.2.1 Carbon Nanotubes -- 7.2.2 Copper Nanoparticles -- 7.2.3 Graphene -- 7.2.4 Hydroxyapatite Nanoparticles -- Wet Synthesis -- Dry Methods -- 7.2.5 Silver Nanoparticles -- 7.2.6 Zinc Oxide Nanoparticles -- 7.3 Toxicity of Engineered Nanostructures in Aquatic Environments -- 7.3.1 Nanotoxicity Investigations in Microalgae and Microcrustaceans -- Toxicity Assays with Pseudokirchneriella subcapitata -- Toxicity Assays with Microcrustaceans Daphnia and Artemia -- 7.3.2 Nanotoxicity Investigation in Fishes -- 7.3.3 Nanostructure Risk Assessments and Safety Analysis -- 7.4 Conclusion and Final Remarks -- References -- Chapter 8: In Vitro Methodologies for Toxicological Assessment of Drug Delivery Nanocarriers -- 8.1 Introduction -- 8.2 Drug Delivery Nanocarriers (DDNCs) -- 8.3 Nanomaterials Physicochemical Parameters Evaluation -- 8.4 In Vitro Toxicological Assessment of Nanomaterials -- 8.4.1 Cytotoxicity and Cell Viability Assays -- 8.4.2 Oxidative Stress -- 8.4.3 Proinflammatory Activity and Immunological Response -- 8.4.4 Genotoxicity -- 8.4.5 "Omics" Methodologies -- 8.5 Challenges of Toxicological In Vitro Testing -- 8.6 Conclusions and Future Perspectives -- References -- Chapter 9: Impact of Nanomaterials on the Food Chain -- 9.1 Preface -- 9.2 Naturally Occurring Nanomaterials in Food -- 9.3 Contamination of Food-Associated Ecosystems with Nanomaterials -- 9.4 Uptake, Bioaccumulation, and Biomagnification of Nanomaterials in Food -- 9.5 Food Industry Welcomes Nanomaterials -- 9.6 Nanomaterials as Regulatory Tools in Agri-Food Systems -- 9.7 Nanomaterial Toxicity in Food Animals and Plants -- 9.8 Conclusions and Outlooks -- References -- Chapter 10: Phytoresponse to Nanoparticle Exposure -- 10.1 Introduction -- 10.2 Plant-NP Interactions -- 10.2.1 Plant-NP Interaction: No Effect/Positive Effect. , No Effect of NP Exposure on the Plants -- Stimulatory Effect of NPs on Seed Germination and Plant Vegetative Growth -- NP-Mediated Plant Tolerance to Stress and Disease -- 10.2.2 Plant-NP Interaction: Negative Effects -- Negative Effect on Seed Germination and Root and Shoot Elongation -- Negative Effect of NPs on Plant Biomass and Chlorophyll Content -- NP-Induced Oxidative Stress on Plants -- Deleterious Effects of NPs on the Genetic Constitution of Plants: Genotoxicity -- Negative Effect of NPs on Plant Nutritional Quality/Status -- 10.3 Mechanism Regulating Plant-NP Interactions -- 10.3.1 Mechanism Underlying the Positive Effect of NPs on Plants -- NPs Enhance Water Uptake -- NPs Upregulated Photosynthesis and Secondary Metabolism -- NPs Change Genetic Material Expression -- NPs Mediated Increase in Nutrient Absorption -- NPs Changed Cell Architect -- NPs Enhanced Tolerance to Plant Stress and Disease -- 10.3.2 Mechanism Underlying the Negative Effects of NPs on Plants -- NPs Reduced Chlorophyll Content and Inhibited Photosynthesis -- NPs Altered Plant Maturity and Genetic Constitution -- NPs Negatively Altered Plant Growth by Inducing Oxidative/Abiotic Stress -- NPs Disturbed the Nutritional Status of Plants -- Overall Effect on Vegetative Growth Through Other Mechanisms -- 10.4 NPs can Pass Through Tropic Levels: Biotransformation and Biomagnification, a Serious Concern -- 10.5 Conclusions -- 10.6 Future Perspectives -- References -- Chapter 11: Environmental Impact and Econanotoxicity of Engineered Nanomaterials -- 11.1 Introduction -- 11.2 Naturally Occurring and Engineered Nanoparticles -- 11.3 Different Classes of Engineered Nanoparticles -- 11.4 Engineered Nanomaterials in Pharmaceuticals: Biological and Environmental Interactions -- 11.5 Physicochemical Properties of Engineered Nanomaterials and Their Toxicity. , 11.5.1 Effect of Particle Size -- 11.5.2 Effect of Shape and Structure -- 11.5.3 Effect of Surface Charge -- 11.5.4 Effect of Composition and Crystalline Structure -- 11.5.5 Effect of Aggregation and Concentration -- 11.6 Ecological Accumulation of Engineered Nanoparticles -- 11.6.1 Bioavailability -- 11.6.2 Bioconcentration -- 11.6.3 Bioaccumulation -- 11.6.4 Biomagnification -- 11.7 Toxicity and Environmental Impact of Nanoparticles -- 11.8 Risk Assessment of Engineered Nanoparticles -- 11.9 Nanowaste: Guidelines/Regulatory Measures -- 11.10 Concluding Remarks, Challenges, and Perspectives -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Forschungsbericht ; Alkoholismus ; Tiermodell ; Zeitreihe ; Cluster-Analyse
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (7 Seiten, 183,21 KB)
    Language: German
    Note: Förderkennzeichen BMBF 01ZX1311C. - Verbund-Nummer 01150093 , Autoren dem Berichtsblatt entnommen. - Paralleltitel dem englischen Berichtsblatt entnommen , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Mit deutscher und englischer Zusammenfassung
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Food. ; Electronic books.
    Description / Table of Contents: Rapid industrialization and intensive increase in agricultural activities has decreased the soil quality, fertility, thereby adversely impacting environment, which is a serious concern globally. This book will be covering various roles of biological as well as physico-chemical management technologies for environment sustainability.
    Type of Medium: Online Resource
    Pages: 1 online resource (385 pages)
    Edition: 1st ed.
    ISBN: 9781000735956
    DDC: 363.705
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Singapore :Springer,
    Keywords: Bioremediation. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (706 pages)
    Edition: 1st ed.
    ISBN: 9789811943201
    DDC: 628.5
    Language: English
    Note: Intro -- Preface -- Acknowledgments -- Contents -- About the Editors -- Part I: Bioremediation and Biodegradation -- 1: Bioremediation and Functional Metagenomics: Advances, Challenges, and Opportunities -- 1.1 Introduction -- 1.2 Bioremediation -- 1.3 History of Bioremediation -- 1.4 Bioremediation Successes -- 1.5 Mechanism of Bioremediation -- 1.6 Microorganisms Used in Bioremediation -- 1.6.1 Fungi -- 1.6.1.1 Phanerochaete Chrysosporium -- 1.7 Factors Affecting Bioremediation -- 1.7.1 Biotic Factors -- 1.7.1.1 The Availability of Bacteria That Degrade Hydrocarbons -- 1.7.1.2 Competition and Cooperation Among Bacteria -- 1.7.1.3 Exogenous and Indigenous Hydrocarbon-Degrading Bacteria -- 1.7.1.4 Number of Hydrocarbon-Degrading Bacteria -- 1.7.1.5 Redox Potential of the Bacteria -- 1.7.1.6 Effect of Biosurfactants -- 1.7.2 Abiotic Factors -- 1.7.2.1 Contaminant Physical and Chemical Properties -- 1.7.2.2 Hydrocarbon Concentration -- 1.7.2.3 Nutrient Availability -- 1.7.2.4 Oxygen Availability -- 1.7.2.5 Moisture Availability -- 1.7.2.6 Bioavailability -- 1.8 Bioremediation Types -- 1.8.1 Ex Situ Bioremediation -- 1.8.1.1 Treatment in the Solid Phase -- 1.8.1.2 Slurry-Phase Bioremediation -- 1.8.2 In Situ Bioremediation -- 1.9 Bioremediation Approaches for Environmental Clean-Up -- 1.9.1 Ex Situ Bioremediation Approaches -- 1.9.1.1 Biopile -- 1.9.1.2 Biofilter -- 1.9.1.3 Land Farming -- 1.9.1.3.1 Composting -- 1.9.1.4 Bioreactor -- 1.9.2 In Situ Bioremediation Approaches -- 1.9.2.1 Bioventing -- 1.9.2.2 Biosparging -- 1.9.2.3 Bioslurping -- 1.10 Metagenomics -- 1.11 Metagenomics in Bioremediation Process -- 1.12 Metagenomics Research in a Contaminated Environment -- 1.12.1 Sampling from Contaminated Site -- 1.12.2 Extracting the DNA from Contaminated Samples -- 1.12.3 Metagenome Analysis -- 1.12.3.1 Targeted Metagenomics Using a Library. , 1.12.3.1.1 Creating a Metagenomics Library -- 1.12.3.1.2 Screening of Metagenomic Clones -- 1.12.3.1.2.1 Screening Based on a Sequence -- 1.12.3.1.2.2 Function-Driven Sequence -- 1.12.4 Direct Sequencing of Metagenomics -- 1.12.5 Next-Generation Sequencing -- 1.12.6 Bioinformatics Analysis -- 1.12.7 Assembly -- 1.12.8 Binning -- 1.12.9 Annotation -- 1.13 Metagenomics in Bioremediation: Current Challenges and Future -- 1.14 Conclusion -- References -- 2: Bioremediation: Gaining Insights Through Metabolomics -- 2.1 Introduction -- 2.2 Impact of Metabolomics on Bioremediation -- 2.3 Application of Computer in Metabolomic Study -- 2.4 Application of Metabolomics in Space Bioremediation -- 2.5 Future Advancement -- 2.6 Conclusion -- References -- 3: Metagenomics, Microbial Diversity, and Environmental Cleanup -- 3.1 Introduction -- 3.2 Conventional Methods of Gene Sequencing -- 3.2.1 Polymerase Chain Reaction (PCR) -- 3.2.2 Fluorescence In Situ Hybridization (FISH) -- 3.2.3 Amplified Ribosomal DNA Restriction Analysis -- 3.2.4 Ribosomal Intergenic Spacer Analysis -- 3.2.5 DNA Microarrays -- 3.2.6 Randomly Amplified Polymorphic DNA (RAPD) Analysis -- 3.3 Next-Generation Sequencing Techniques -- 3.3.1 Pyrosequencing Technology -- 3.3.2 Roche 454 (GS FLX Plus) -- 3.3.3 Reverse Terminator Technology -- 3.3.3.1 Illumina Solexa -- 3.3.3.2 Ion Torrent -- 3.3.3.3 Sequencing by Ligation Technology -- 3.3.3.4 ABI SOLiD -- 3.4 Metagenomics Sequencing and Its Framework -- 3.5 Tools for Metagenomic Data Analysis -- 3.6 Bioinformatics Tools for Functional Analysis of Metagenome -- 3.7 Application of Metagenomics -- 3.7.1 Food Industries -- 3.7.2 Novel Bioactive Discovery -- 3.7.3 Novel Antimicrobials Discovery -- 3.7.4 Xenobiotic Degradation -- 3.8 Importance of Metagenomics in Bioremediation of Pollutants -- 3.9 Conclusion and Future Perspectives -- References. , 4: Plant-Microbe Associations in Remediation of Contaminants for Environmental Sustainability -- 4.1 Introduction -- 4.2 Plant-Microbe Interaction -- 4.2.1 Endophytic Microbiome -- 4.2.2 Plant Growth-Promoting Rhizobacteria -- 4.2.3 Plant-Released Signals -- 4.2.4 Microbial Signals -- 4.2.5 Quorum Sensing -- 4.3 Remediation of Contaminants by Plant-Microbe Combination -- 4.3.1 Removal of Pollutants from Aquatic Environments -- 4.3.2 Removal of Pollutants from Terrestrial Environment -- 4.3.3 Removal of Pollutants from Atmosphere -- 4.4 Examples of Bacterial-Assisted Phytoremediation -- 4.5 Microbial-Assisted Phytoextraction -- 4.6 Microbial-Assisted Phytostabilisation -- 4.7 Microbial-Assisted Phytovolatilisation -- 4.8 Rhizoremediation -- 4.9 Phytostimulation -- 4.10 Microbial-Assisted Phytodegradation -- 4.11 Challenges Faced During Remediation by Plant-Microbe Associations -- 4.12 Conclusion -- References -- 5: Recent Trends in Bioremediation of Heavy Metals: Challenges and Perspectives -- 5.1 Introduction -- 5.2 Heavy Metal Pollution -- 5.3 Bioremediation of Heavy Metals: Principles, Mechanisms and Factors -- 5.3.1 Principles of Bioremediation -- 5.3.2 Mechanisms of Bioremediation -- 5.3.3 Factors Affecting Bioremediation -- 5.4 Techniques for Detection and Assessment of Heavy Metals in the Environment -- 5.5 Techniques of Bioremediation -- 5.5.1 In Situ Techniques -- 5.5.2 Ex Situ Techniques -- 5.6 Plant-Mediated Heavy Metal Removal -- 5.7 Role of Microbes in Heavy Metal Removal -- 5.8 Recent Advancement in Heavy Metal Removal Techniques -- 5.9 Advantages and Limitations -- 5.10 Application and Future Prospects of Bioremediation -- 5.11 Conclusions -- References -- 6: Enzyme Technology for Remediation of Contaminants in the Environment -- 6.1 Introduction -- 6.2 Enzyme as Contaminant Sterilizing Agent -- 6.3 Pollutants. , 6.3.1 Organic Pollutants -- 6.3.1.1 Nitro Compounds -- 6.3.1.2 Dyes -- 6.3.1.3 Organophosphorus Hydrolase -- 6.3.1.4 Cytochrome P450 Monooxygenase -- 6.3.1.5 Peroxidase from Horseradish -- 6.3.2 Inorganic Pollutants -- 6.3.2.1 Arsenic -- 6.3.2.2 Chromium -- 6.3.2.3 Mercury -- 6.3.2.4 Lead -- 6.4 Microbial Enzymes in Bioremediation -- 6.4.1 Microbial Oxidoreductase -- 6.4.2 Microbial Laccases -- 6.4.3 Microbial Oxygenases -- 6.4.3.1 Monooxygenases -- 6.4.3.2 Microbial Dioxygenases -- 6.5 Strategies for Overcoming Difficulties Associated with the Enzyme Technology -- 6.6 Plants and their Associated Enzymes: A Agents for Decontamination -- 6.7 Conclusion -- References -- Part II: Environmental Pollution and Wastewater Treatment -- 7: Environmental Toxicity, Health Hazards, and Bioremediation Strategies for Removal of Microplastics from Wastewater -- 7.1 Introduction -- 7.2 Sources of Microplastics in Wastewater -- 7.3 Properties of Microplastics -- 7.4 Ecotoxicity and Health Hazards of Microplastics -- 7.5 Factors Affecting Toxicity of Microplastics -- 7.6 Techniques for Characterization of Microplastics in Wastewater -- 7.7 Bioremediation Strategies for Microplastics -- 7.7.1 Bacterial Degradation of Microplastics -- 7.7.2 Fungal Degradation of Microplastics -- 7.7.3 Microalgal Degradation of Microplastics -- 7.7.4 Microbial Consortia in Microplastics Degradation -- 7.7.5 Microbial Biofilm in Microplastics Degradation -- 7.7.6 Bioreactor Systems for Microplastic Removal from Wastewater -- 7.8 Challenges and Future Perspectives -- 7.9 Conclusion and Recommendations -- References -- 8: Microbial Community Composition and Functions in Activated Sludge Treatment System -- 8.1 Introduction -- 8.2 Characteristics of Activated Sludge -- 8.3 Microbial Diversity in Activated Sludge. , 8.4 Enzyme Activity and Associated Physiological Function of Microbiome in Activated Sludge -- 8.5 Antibiotic Resistance Genes of Activated Sludge -- 8.6 Future Challenges and Opportunities -- 8.7 Conclusion -- References -- 9: Decontamination and Management of Industrial Wastewater Using Microorganisms Under Aerobic Condition -- 9.1 Introduction -- 9.2 Physical and Chemical Attributes of Wastewater -- 9.3 Biological Parameters of Wastewater -- 9.4 Aerobic Treatment of Wastewater -- 9.5 Advanced Biological Wastewater Treatment Technologies -- 9.6 Treatment of Sludge After Treatment of Wastewater -- 9.7 Management and Regulation for Quality Control and Quality Assurance of WTPs -- 9.8 Conclusions -- References -- 10: Omics in Industrial Wastewater Treatment -- 10.1 Introduction -- 10.2 The Composition of Industrial Wastewater -- 10.2.1 Food and Dairy Industry -- 10.2.2 Paper and Pulp Industry -- 10.2.3 Textile Industry -- 10.2.4 Mining and Quarry Industry -- 10.2.5 Chemical Industry -- 10.2.6 Leather and Tannery Industry -- 10.3 Industrial Wastewater Treatment Methods -- 10.3.1 Physical Wastewater Treatment Processes -- 10.3.2 Chemical Wastewater Treatment Processes -- 10.3.3 Biological Treatment of Wastewater -- 10.3.3.1 Aerobic Treatment -- 10.3.3.2 Anaerobic Treatment -- 10.4 Application of Omics in Biological Treatment -- 10.4.1 Omics Approaches in Wastewater Treatment -- 10.4.2 Omics in Remediation of Organic Pollutants -- 10.4.3 Omics for the Remediation of Metal Species -- 10.4.4 Genomic Information for Industrial Wastewater Treatment -- 10.5 Challenges, Limitations, and Futuristic Approaches -- References -- 11: Microalgae in Wastewater Treatment and Biofuel Production: Recent Advances, Challenges, and Future Prospects -- 11.1 Introduction -- 11.2 Benefits of Using Microalgae for Environmental Applications. , 11.3 Techniques for Microalgae Culture.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Pollution. ; Biomaterials. ; Aufsatzsammlung ; Sensortechnik ; Nanopartikel ; Biosensor ; Nanotechnologie ; Toxikologie ; Umweltanalytik ; Umwelttoxikologie ; Umweltforschung ; Nanostrukturiertes Material ; Sensor ; Umweltgift ; DNA-Sensor ; Umweltüberwachung ; Nanotechnologie ; Umweltschutz
    Description / Table of Contents: Chapter 01 Nanosensors applications in food, medicine, agriculture and nanotoxicology -- Chapter 02 Nanosensors for the detection of chemical food adulterants -- Chapter03 Metal oxides and biopolymer/metal oxides bionanocomposites as green nanomaterials for heavy metals removal -- Chapter 04 Impact of nanomaterials on the food chain -- Chapter 05 Phytotoxic impact of nanomaterials for nanosafety -- Chapter 06 Review of Bioaccumulation, biomagnification, and biotransformation of nanomaterials -- Chapter 07 Nanomaterials and human health: An overview -- Chapter 08 Nanomaterials and human health: Nano-biomaterials in dentistry -- Chapter 09 Nanotoxicological approaches towards nanosafety -- Chapter 10 Nanomaterials in the treatment and prevention of human oral infections -- Chapter 11 Nanomaterials causing cellular toxicity and genotoxicity -- Chapter 12 Techniques, methods, procedures and protocols in nanotoxicology -- Index.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XII, 305 p. 73 illus., 55 illus. in color.)
    Edition: 1st ed. 2021.
    ISBN: 9783030694920
    Series Statement: Environmental Chemistry for a Sustainable World 67
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Agriculture. ; Pollution. ; Nanotechnology. ; Waste management.
    Description / Table of Contents: Chapter 01 Sensors for the Detection of Heavy Metal Contaminants in Water and Environment -- Chapter 02 Nanosensors for Heavy Metal Detection in Environmental Media: New Trends and Recent Advances -- Chapter 03 AIE-Based Fluorescent Nanosensors for the Detection of Heavy Metal Ions -- Chapter 04 Nanosensors based on lipid films for environmental applications -- Chapter 05 Novel Chemical Sensors Based On Green Composite Materials For Environmental Analysis -- Chapter 06 Toxicology and Safety Aspects of Nanosensor on Environment, Food and Agriculture -- Chapter 07 Nanosensors Used for Detection of Fertilizers and Other Agricultural Applications -- Chapter 08 Sensors for the Detection of Food Contaminants -- Chapter 09 Nanotechnology-Based Approaches for Sensing And Remediation of Mycotoxins in Food and Agriculture -- Chapter 10 Detection of toxic contaminant in food items -- Chapter 11 Nanosensors Based on Lipid Membranes for the Rapid Detection of Food Toxicants -- Chapter 12 Utility of Nanobiosensors in environmental analysis and Monitoring.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XIV, 265 p. 82 illus., 70 illus. in color.)
    Edition: 1st ed. 2021.
    ISBN: 9783030632458
    Series Statement: Environmental Chemistry for a Sustainable World 60
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: MEDICAL / Biotechnology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (329 pages)
    Edition: 1st ed.
    ISBN: 9781351021616
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Editors -- List of Contributors -- Chapter 1 Comprehensive Array of Ample Analytical Strategies for Characterization of Nanomaterials -- 1.1 Background -- 1.2 Overview of Physiochemical Characteristics of Nanomaterials -- 1.3 Size -- 1.3.1 Morphology -- 1.3.2 Surface Properties -- 1.3.3 Composition and Purity -- 1.3.4 Stability -- 1.4 Techniques for Physicochemical Characterization of NPs -- 1.4.1 Microscopic Techniques -- 1.4.1.1 Near-Field Scanning Optical Microscopy (NSOM) -- 1.4.1.2 Scanning Electron Microscopy (SEM) -- 1.4.1.3 Transmission Electron Microscopy (TEM) -- 1.4.1.4 Scanning Tunneling Microscopy (STM) -- 1.4.1.5 Atomic Force Microscopy (AFM) -- 1.4.2 Spectroscopic Techniques -- 1.4.2.1 Optical Spectroscopy -- 1.4.2.2 Ultraviolet-Visible (UV-Vis) Spectroscopy -- 1.4.2.3 Fluorescence Spectroscopy -- 1.4.2.4 Fluorescence Correlation Spectroscopy (FCS) -- 1.4.2.5 Confocal Correlation Spectroscopy (CCS) -- 1.4.2.6 Infrared (IR) Spectroscopy -- 1.4.2.7 Raman Scattering (RS) -- 1.4.2.8 Nuclear Magnetic Resonance (NMR) -- 1.4.2.9 Mass Spectrometry (MS) -- 1.4.2.10 Circular Dichroism (CD) -- 1.4.3 Miscellaneous Techniques -- 1.4.3.1 Dynamic Light Scattering (DLS) -- 1.4.3.2 Zeta Potential -- 1.4.3.3 X-Ray Diffraction (XRD) -- 1.4.3.4 Thermal Gravimetric Analysis (TGA) -- 1.4.3.5 Quartz Crystal Microbalance (QCM) -- 1.4.3.6 Differential Scanning Calorimetry (DSC) -- 1.4.3.7 Vibrating Sample Magnetometer (VSM) -- 1.4.3.8 Analytical Ultracentrifugation (AUG) -- 1.4.3.9 Brunauer-Emmett-Teller (BET) -- Conclusion -- References -- Chapter 2 Facile Chemical Fabrication of Designer Biofunctionalized Nanomaterials -- 2.1 Introduction -- 2.2 Synthesis of Nanoparticles -- 2.3 Methods of Surface Functionalization -- 2.4 Coupling Strategies -- 2.4.1 Covalent Coupling. , 2.4.1.1 Click-Chemistry Approach -- 2.4.2 Noncovalent Coupling -- 2.5 Affinity Interactions -- 2.5.1 Poly(ethylene glycol) -- 2.5.2 Bioconjugation Using Biomolecules -- 2.5.3 Biotin-Avidin -- 2.5.4 DNA/Nucleic Acids -- 2.5.5 Proteins and Peptides -- 2.5.6 Carbohydrates -- 2.5.7 Phospholipids -- Conclusion -- References -- Chapter 3 Functionalized Nanogold: Its Fabrication and Needs -- 3.1 Introduction -- 3.2 Fabrication of Functionalized Gold Nanostructures -- 3.2.1 Physical Techniques of Fabrication -- 3.2.2 Chemical Synthesis Methods for Functionalized Gold -- 3.2.2.1 Citrate Stabilized Gold Nanoparticles -- 3.2.2.2 Thiol-Protected Gold Nanostructures -- 3.2.2.3 Polymer-Stabilized Gold Nanostructures -- 3.2.2.4 Anisotropic Gold Nanostructures -- 3.2.3 Electrochemical and Photochemical Synthesis -- 3.3 Surface Plasmon Resonance Properties of Gold Nanostructures -- 3.4 Application of Gold Nanostructures -- 3.4.1 Chemical Sensing -- 3.4.2 Biosensing -- 3.4.3 Catalysis -- 3.4.3.1 Plasmonic Photocatalysis -- Conclusion -- References -- Chapter 4 Biogenic Synthesis of Silver Nanoparticles and Their Applications -- 4.1 Nanotechnology -- 4.2 Nanomaterials and Nanoparticles -- 4.3 Silver Nanoparticles -- 4.4 Publication Scenario on Silver Nanoparticles Synthesis -- 4.4.1 Physical Approaches -- 4.4.2 Chemical Approaches -- 4.4.3 Biological Synthesis of Silver Nanoparticles -- 4.5 Microbe-Assisted Synthesis of Silver Nanoparticles -- 4.6 Plant-Mediated Synthesis of Silver Nanoparticles -- 4.7 Fungal-Derived Silver Nanoparticles -- 4.8 Superiority of Biological Methods -- 4.9 Silver Nanoparticles from White-Rot Fungi -- 4.10 Silver Nanoparticles Synthesis -- 4.11 Biosynthesis of Nanoparticles by Fungi -- 4.12 Intracellular Synthesis of Nanoparticles by Fungi -- 4.13 Extracellular Synthesis of Nanoparticles by Fungi. , 4.14 Silver Nanoparticles from White-Rot Fungi -- 4.15 Applications of Silver Nanoparticles -- 4.16 Antimicrobial Activity -- 4.17 Anticandidal Activity -- 4.18 Application of Biogenic Silver Nanoparticles in Fabrics -- 4.19 Anticancer Activity -- 4.20 Nanotechnology in Wood Protection -- Conclusion -- References -- Chapter 5 Nanostructure Thin Films: Synthesis and Different Applications -- 5.1 Introduction -- 5.2 Atomic Layer Deposition of Thin Film -- 5.3 Chemical Bath Deposition of Thin Film -- 5.4 Electrodeposition of Thin Films -- 5.5 Spray Pyrolysis Deposition of Thin Film -- 5.6 Successive Ionic Layer Absorption and Reaction Deposition of Thin Film -- 5.7 RF Sputtering Deposition of Thin Films -- Conclusion -- Acknowledgments -- References -- Chapter 6 Carbon Nanotubes: Preparation and Surface Modification for Multifunctional Applications -- 6.1 Introduction -- 6.2 Preparation of Carbon Nanotubes -- 6.2.1 Arc Discharge -- 6.2.2 Laser Ablation (Also Called Laser Vaporization) -- 6.2.3 Chemical Vapor Deposition -- 6.3 Carbon Nanotube Modification -- 6.3.1 Covalent Modification -- 6.3.1.1 Sidewall and End-T Modification -- 6.3.1.2 Defect Modification -- 6.3.2 Non-Covalent Modification -- 6.3.2.1 Exohedral Modification -- 6.3.2.2 Endohedral Filling Modification -- 6.4 Application -- 6.4.1 Functional Nanocomposite Materials -- 6.4.2 Electronics -- 6.4.3 Biotechnological Applications -- Conclusion -- References -- Chapter 7 Carbon Dots: Scalable Synthesis, Physicochemical Properties, and Biomedical Application -- 7.1 Introduction -- 7.2 Characteristic Properties of Carbon Dots -- 7.3 Synthesis and Application of Carbon Dots -- 7.4 Future Prospects of Carbon Dots -- Conclusion -- References -- Chapter 8 Investigations on Exotic Forms of Carbon: Nanotubes, Graphene, Fullerene, and Quantum Dots -- 8.1 Introduction. , 8.2 Synthesis Methods of Different Carbon Nanomaterials -- 8.2.1 Fullerene -- 8.2.2 Carbon Nanotubes (CNTs) -- 8.2.2.1 Arc Discharge -- 8.2.2.2 Laser Ablation -- 8.2.2.3 Chemical Vapor Deposition -- 8.2.3 Preparation of Graphene -- 8.2.4 Synthesis of CQDs -- 8.3 Our Group's R and D Efforts towards Synthesis and Characterization of CNTs, Graphene, Fullerene, and Quantum Dots -- 8.3.1 Synthesis of CNTs and Fullerene -- 8.3.2 Synthesis of Graphene -- 8.3.3 Synthesis of CQDs -- 8.4 Conclusions -- Acknowledgments -- References -- Chapter 9 Nanodiamonds and Other Organic Nanoparticles: Synthesis and Surface Modifications -- 9.1 Introduction -- 9.2 Nanodiamonds -- 9.2.1 Structure of Nanodiamonds -- 9.2.2 Significant Properties of Nanodiamonds -- 9.2.2.1 Physical Properties -- 9.2.2.2 Chemical Properties -- 9.2.2.3 Biological Properties -- 9.2.3 Synthesis of Nanodiamonds -- 9.2.3.1 Detonation Synthesis -- 9.2.3.2 Laser-Based Synthesis -- 9.2.3.3 High-Pressure High-Temperature Synthesis -- 9.2.3.4 Ultrasonic Cavitation -- 9.2.3.5 Chemical Vapor Deposition -- 9.2.4 Purification of Nanodiamonds -- 9.2.5 Functionalized Nanodiamonds -- 9.3 Organic Nanoparticles -- 9.3.1 General Synthetic Approaches for the Fabrication of Organic Nanoparticles -- 9.3.1.1 Top-Down Approaches -- 9.3.1.2 Bottom-Up Approaches -- 9.3.2 Synthesis of Organic Nanoparticles -- 9.3.2.1 Micelles -- 9.3.2.2 Vesicles and Liposomes -- 9.3.2.3 Dendrimers -- 9.3.2.4 Polymeric Nanoparticles -- 9.3.2.5 Polymer-Based Nanostructures -- 9.3.2.6 Lipid-Based Nanoparticles -- Conclusion -- Acknowledgments -- References -- Chapter 10 Polymeric Nanoparticles: Preparation and Surface Modification -- 10.1 Introduction -- 10.2 Polymers -- 10.3 Polymer Properties -- 10.4 Nanoparticles -- 10.5 Strategies to Functionalize Nanoparticles -- 10.6 Characterizations of Polymeric Nanoparticles -- References. , Chapter 11 Cellulose Fibers and Nanocrystals: Preparation, Characterization, and Surface Modification -- 11.1 Introduction -- 11.2 Cellulose Fibers: Structure and Chemistry -- 11.3 Cellulose Sources -- 11.4 Cellulose Isolation Methods -- 11.4.1 Cellulose from Lignocellulosic Materials -- 11.4.2 Cellulose from Animals, Algae, and Bacteria -- 11.5 Overview of Cellulose Nanofibers -- 11.6 Cellulose Nanocrystals: Preparation Methods -- 11.7 Characterization and Properties of Cellulose Nanocrystals -- 11.7.1 Fourier Transform Infrared Spectroscopy (FTIR) -- 11.7.2 X-Ray Diffraction Analysis -- 11.7.3 Scanning Electron Microscopy (SEM) -- 11.7.4 Transmission Electron Microscopy (TEM) -- 11.7.5 Atomic Force Microscopy (AFM) -- 11.7.6 Thermogravimetric Analysis (TGA) -- 11.8 Surface Modification of Cellulose Nanocrystals -- 11.8.1 Covalent Modification -- 11.8.1.1 Esterification -- 11.8.1.2 Silylation -- 11.8.1.3 Etherification -- 11.8.2 Non-Covalent Modification -- 11.8.3 Mercerization -- Conclusion -- Acknowledgments -- References -- Chapter 12 Protein and Peptide Nanoparticles: Preparation and Surface Modification -- 12.1 Introduction -- 12.2 Parameters for the Preparation of Protein Nanoparticles -- 12.2.1 Protein Composition -- 12.2.2 Protein Solubility -- 12.2.3 Surface Properties -- 12.2.4 Properties of Drugs -- 12.3 Methods of Preparation -- 12.3.1 Desolvation -- 12.3.2 Crosslinking -- 12.3.3 Coacervation -- 12.3.4 Emulsification -- 12.3.5 Nanoprecipitation -- 12.3.6 Nanoparticles Auto Assembly -- 12.3.7 Coating Layer by Layer -- 12.3.8 Spray Drying -- 12.3.9 Electrospray -- 12.3.10 Salting Out -- 12.3.11 Albumin-Bound Nanoparticle Preparation -- Conclusion -- References -- Chapter 13 Recent Advances in Glycolipid Biosurfactants at a Glance: Biosynthesis, Fractionation, Purification, and Distinctive Applications -- 13.1 Introduction. , 13.2 Biosynthesis and Physiochemical Aspects of Glycolipid BS.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: Sewage-Microbiology. ; Sewage-Purification-Biological treatment. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (371 pages)
    Edition: 1st ed.
    ISBN: 9781000775310
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Acknowledgments -- Editors -- Contributors -- Section I: Introduction to Wastewater and Remediation Technologies -- 1. Wastewater Pollution, Toxicity Profile, and Their Treatment Approaches: A Review -- 1.1 Introduction -- 1.2 The Unique Properties of Water Available Globally -- 1.2.1 Biological Properties and Clinical Benefits of Water -- 1.2.2 Physical Properties of Water -- 1.2.3 The Chemical Properties of Water -- 1.3 World's Water Resources and Their Distribution -- 1.4 Water Pollution -- 1.5 The Global Water Pollution -- 1.6 Water Pollution in India -- 1.7 Major Water Pollutants -- 1.8 An Understanding of Wastewater Treatment Methods -- 1.9 Waste Water Pollutants and Their Treatment Approaches with Nanotechnology and Nanomaterials -- 1.10 Role of Nanoparticles in Water Decontamination -- 1.11 Conclusion and Future Prospects -- Acknowledgement -- References -- 2. Bioremediation: A Sustainable Approach Towards Clean Environment -- 2.1 Introduction -- 2.2 Toxicity of the Pollutants to Living Beings and the Environment -- 2.3 Bioremediation -- 2.4 Approaches of Bioremediation -- 2.4.1 In-Situ Bioremediation -- 2.4.1.1 Biosparging -- 2.4.1.2 Bioslurping -- 2.4.1.3 Bioventing -- 2.4.1.4 Biostimulation -- 2.4.1.5 Bioaugmentation -- 2.4.1.6 Biopiling -- 2.4.2 Ex-Situ Bioremediation -- 2.4.2.1 Composting -- 2.4.2.2 Land Farming -- 2.4.2.3 Biopiles -- 2.5 Phytoremediation -- 2.5.1 Phytoextraction/Phytoaccumulation -- 2.5.2 Phytostabilization -- 2.5.2.1 Biochar -- 2.5.3 Phytodegradation/Phytotransformation -- 2.5.4 Phytovolatization -- 2.5.5 Phytofiltration/Rhizofiltration -- 2.5.6 Phytorestauration -- 2.5.6.1 Advantages of Using Phytoremediation -- 2.6 Microorganisms in Bioremediation -- 2.6.1 Biomining -- 2.6.2 Biooxidation. , 2.6.3 Enzyme Mediated Bioremediation -- 2.7 Bioreactor-Based Bioremediation -- 2.8 Role of Biosurfactants in Bioremediation -- 2.9 Application of Metagenomics in Bioremediation -- 2.10 Constraints in Bioremediation -- 2.11 Conclusion -- 2.12 Future Scope -- References -- 3. Constructed Wetland-Microbial Fuel Cell Technology During Wastewater Treatment: Progress, Challenges, and Opportunities -- 3.1 Introduction -- 3.2 Constructed Wetland and Microbial Fuel Cells' Operational Mechanism -- 3.3 Various Designs and Operations of Constructed Wetlands -- 3.4 Factors Affecting the Operational Mechanisms -- 3.4.1 Electrode Material and Separators -- 3.4.2 Anode Materials -- 3.4.3 Cathode Materials -- 3.4.4 Separator -- 3.4.5 Types of Substrates -- 3.4.6 Constructed Wetland Plants -- 3.5 Application of Constructed Wetland-Microbial Fuel Cells -- 3.6 Advancement in Constructed Wetlands by Integration of Microbial Fuel Cell -- 3.7 Challenges and Future Perspectives -- 3.8 Conclusion -- References -- 4. Genetically Engineered Microorganisms (GEMs) for a Sustainable Environment: A Promising Biotechnological Tool -- 4.1 Introduction -- 4.2 Microbial Bioremediation Is Influenced by a Variety of Factors -- 4.2.1 Biological Factors -- 4.2.1.1 Environmental Factors -- 4.3 Types of Bio-Remediation -- 4.3.1 Bio-Stimulation -- 4.3.2 Bioaugmentation -- 4.3.3 Biovent -- 4.3.4 Biopiles -- 4.4 Microbial Enzymes for Bioremediation -- 4.4.1 Cytochrome P450 -- 4.4.2 Laccase -- 4.4.3 Dehydrogenase -- 4.4.4 Hydrolase -- 4.5 Examples of Genetic Engineering of Microorganisms and Biodegradation -- 4.5.1 Branched-Chain Aromatics -- 4.5.1.1 Pseudomonas Putida Plasmid TOL Pathway -- 4.5.2 Chlorinated Compounds -- 4.5.2.1 Chlorobenzoate -- 4.5.2.2 Polychlorinated Biphenyls (PCBs) and Chlorinated Biphenyls -- 4.5.2.3 Trichlorethylene (TCE). , 4.6 Recombinant DNA (r DNA) Technology for Microorganisms in Bioremediation -- 4.7 Bioremediation Potential -- 4.8 Bioremediation Impact on Human and Environmental Health -- 4.9 Conclusion -- References -- 5. Performance of Anammox in Industrial Wastewater Treatment: Recent Advances and Future Prospects -- 5.1 Introduction of Anammox -- 5.2 Contribution of Anammox in the Wastewater Treatment Plants (WWTPs) -- 5.3 Industrial Wastewater Characteristic -- 5.3.1 Biological Nitrogen Removal Treatments in Industrial Wastewater -- 5.3.1.1 Conventional Nitrification-Denitrification Process -- 5.3.1.2 Nitritation-Denitritation Process -- 5.3.1.3 Partial Nitritation/Anammox (PN/A) Process -- 5.4 Anammox in Industrial Wastewater -- 5.5 Challenges -- 5.6 The Opportunity and Future Prospects -- 5.7 Conclusion -- Acknowledgements -- References -- 6. Vermifiltration Technology: Earthworm Assisted Green Technology for Wastewater Treatment -- 6.1 Introduction -- 6.2 Vermifiltration Technology -- 6.2.1 Earthworms: Earth's Trash Managers -- 6.2.2 Design of the Vermifilter -- 6.2.3 Types of Earthworms -- 6.2.4 Hydraulic Retention Time (HRT) and Hydraulic Loading Rate (HLR) -- 6.3 Mechanism of Vermifiltration Technology for Wastewater Treatment -- 6.4 Integration of Earthworms in Other Nature-Based Solutions -- 6.5 Case Studies -- 6.5.1 Integration of Constructed Wetlands with Vermifilter to Treat Feedlot Runoff Wastewater - A Case Study in the US -- 6.5.2 Integration of Vermifiltration and Hydroponic System for Swine Wastewater Treatment - A Case Study in Portugal (Ispolnov et al., 2021) -- 6.5.3 Indian Institute of Technology (IIT) Bhubaneshwar on Macrophyte Assisted Vermifilter for Dairy Wastewater (Samal et al., 2018) -- 6.5.4 Earthworms Help in Dealing with the Clogging Issue of HSFCWs - A Case Study of Australia. , 6.5.5 Potential Effects of Applying Earthworms Into Constructed Wetlands Ecosystem - A Case Study in Thailand -- 6.5.6 INNOQUA Project (2020) -- 6.6 Advantages of the Integration -- References -- 7. Amalgamation of Constructed Wetland and Microbial Fuel Cell Systems as a Sustainable Approach Towards Wastewater Treatment and Energy Recovery -- 7.1 Introduction -- 7.2 Constructed Wetland and Microbial Fuel Cell -- 7.2.1 Constructed Wetlands and Its Removal Mechanism -- 7.2.1.1 Removal Mechanism in CW -- 7.2.2 Microbial Fuel Cell and Its Removal Mechanism -- 7.2.3 Integration of CW-MFC -- 7.3 Design Considerations in Constructed Wetland and Microbial Fuel Cell -- 7.3.1 Vegetation in CWs -- 7.3.2 Substrate -- 7.3.3 Materials of Electrode -- 7.3.4 Impacts of Vegetation and Media on Electricity Production -- 7.4 Current Scenario and Advancement in CW-MFCs -- 7.4.1 Use of Integrated CW-MFC for Various Wastewater Treatment -- 7.4.2 Resource Recovery Options from Integrated CW-MFCs -- 7.4.3 Comparison of CW-MFC with Other Treatment Technologies -- 7.5 Future Scope and Challenges -- 7.6 Conclusion -- Abbreviation -- Acknowledgments -- References -- 8. Indigenous Microorganisms: An Effective In-Situ Tool to Mitigate Organic Pollutants from Contaminated Sites -- 8.1 Occurrence of Organic Contaminants -- 8.2 Conventional Techniques for Remediation -- 8.3 Indigenous Microorganisms for Remediation -- 8.4 Bioremediation Prospects: In-Situ and Ex-Situ -- 8.4.1 Bioattenuation: Natural Method of Degradation -- 8.4.2 Biostimulation: Input of Correct Nutrient Ratio -- 8.4.3 Bioaugmentation: When Locals Take Up the Task? -- 8.5 Advanced Technologies to Improve In-Situ Remediation -- 8.5.1 Genetically Modified Microbes (GEMs) -- 8.5.2 Biofilm/Bio-Surfactants Formation -- 8.5.2.1 Biofilm Formation -- 8.5.2.2 Biosurfactants Production -- 8.5.3 Nano-Bioremediation. , 8.5.4 Metagenomics Approach -- 8.6 Conclusion -- Acknowledgements -- References -- 9. Bioaugmentation of Petroleum Hydrocarbons and Polycyclic Aromatic Hydrocarbons: A Review -- 9.1 Introduction -- 9.2 Bioaugmentation -- 9.3 Biochemistry of Bioaugmentation Technique -- 9.3.1 Dehalogenation -- 9.3.2 Fragmentation -- 9.3.3 Mineralization -- 9.3.3.1 Aerobic Mode of Degradation -- 9.3.3.2 Anaerobic Mode of Degradation -- 9.4 Factors Affecting Bioaugmentation -- 9.4.1 Water Quality -- 9.4.2 Temperature -- 9.4.3 pH -- 9.4.4 Organic Matter -- 9.4.5 Redox Potential and Oxygen Content -- 9.4.6 Nutrients -- 9.4.7 Plant Root Exudates -- 9.5 Bioaugmentation of Total Petroleum Hydrocarbons (TPH) -- 9.5.1 Bioaugmentation of Polycyclic Aromatic Hydrocarbons (PAHs) -- 9.5.1.1 Bacterial Mechanisms of PAH Metabolism -- 9.5.1.2 Fungal Mechanisms of PAH Metabolism -- 9.6 Conclusion -- References -- 10. Microbial Biofilms for Efficient Biological Wastewater Treatment: Mechanisms, Challenges, Opportunities, and Future Perspectives -- 10.1 Introduction -- 10.2 Mechanism of Biofilm Formation -- 10.2.1 Extracellular Polymeric Substances (EPS) -- 10.2.2 Quorum Sensing in Biofilm Formation -- 10.2.3 Different Approaches for Studying Biofilm Development -- 10.3 Factors Influencing Biofilm Development -- 10.3.1 Abiotic Factors -- 10.3.2 Surface Topography -- 10.3.3 Velocity and Turbulence -- 10.3.4 Biotic Factors -- 10.4 Biofilm Technologies in Wastewater Treatment -- 10.4.1 Trickling Filters -- 10.4.2 Rotating Biological Contactor -- 10.4.3 Moving Bed Biofilm Reactor -- 10.4.4 Biofilm Airlift Suspension Reactors -- 10.4.5 Sequencing Batch Biofilm Reactor -- 10.4.6 Biofilm-Based Membrane Bioreactors -- 10.5 Nutrient Removal in Wastewater Treatment System by Biofilm Technologies -- 10.5.1 Nitrogen Removal -- 10.5.2 Phosphorous Removal. , 10.6 High Strength, Recalcitrant Wastewater Treatment Using Biofilm Technologies.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Earthworms. ; Organic wastes. ; Vermicomposting. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (400 pages)
    Edition: 1st ed.
    ISBN: 9780443160516
    Series Statement: Waste and the Environment: Underlying Burdens and Management Strategies Series
    DDC: 363.7288
    Language: English
    Note: Front Cover -- EARTHWORM TECHNOLOGY IN ORGANIC WASTE MANAGEMENT -- EARTHWORM TECHNOLOGY IN ORGANIC WASTE MANAGEMENT -- Copyright -- Contents -- Contributors -- About the editors -- 1 - Earthworm-associated bacterial community and its role in organic waste decomposition -- 1. Introduction -- 2. Earthworms -- 3. Pollutant degradation mechanisms in vermicomposting -- 4. Bacterial diversity in the alimentary canal -- 5. Vermicast -- 5.1 Physical properties -- 5.2 Microbial properties -- 6. Vermiwash -- 7. Molecular techniques to detect earthworm gut microbes -- 8. Conclusion -- Acknowledgment -- References -- 2 - How do earthworms affect the microbial community during vermicomposting for organic waste recycling? -- 1. Introduction -- 2. Earthworm-microorganism interactions: Selectivity and diet -- 2.1 Bacteria -- 2.2 Fungi -- 2.3 Protozoa -- 3. Microbial abundance and diversity changes during vermicomposting -- 4. Microbial structural changes during vermicomposting -- 5. Microbial functional changes during vermicomposting -- 6. Substate effects on bacterial community during vermicomposting -- 7. Physicochemical properties affecting microbial changes during vermicomposting -- 8. Conclusion -- References -- 3 - Exploring the transfer and transformation of Polycyclic Aromatic Hydrocarbons in vermifiltration for domestic w ... -- 1. Introduction -- 2. Materials and methods -- 2.1 Experimental setup and operation -- 2.2 Chemical analysis and sludge yield coefficient calculation -- 2.3 Sample pretreatment and extraction -- 2.4 Sequential solvent extraction of polycyclic aromatic hydrocarbons -- 2.5 GC/MS analysis -- 2.6 FT-IR spectrum analysis -- 2.7 Three-dimensional fluorescence analyses for water-extractable organic matter -- 2.8 Data analysis -- 3. Results and discussion -- 3.1 Determination of 16 EPAs originating in sewage. , 3.2 Total removal performance of 16 PAHs by vermifiltration -- 3.3 Transferring of polycyclic aromatic hydrocarbons during vermifiltration treatment -- 3.4 Insights into polycyclic aromatic hydrocarbon removal based on molecular weight -- 3.5 Stabilization of polycyclic aromatic hydrocarbons in waste sludge -- 4. Conclusions -- Acknowledgments -- References -- 4 - Vermiremediation of organic wastes: vermicompost as a powerful plant growth promoter -- 1. Introduction -- 2. Vermicompost and its production -- 2.1 Factors influencing vermicomposting -- 2.1.1 pH -- 2.1.2 Moisture -- 2.1.3 C:N ratio -- 2.1.4 Temperature -- 2.2 Microbial community in vermicomposting -- 3. Vermicompost as a plant growth promoter -- 3.1 Stimulation of plant growth using vermicompost infused with beneficial microbes -- 3.2 Stimulation of plant growth by humic substances -- 4. Vermicompost as a plant disease suppression and pest control -- 5. Conclusions and future perspectives -- References -- Further reading -- 5 - Vermiremediation of plant agro waste to recover residual nutrients and improve crop productivity -- 1. Introduction -- 2. Vermiremediation technology -- 2.1 Basic process -- 2.1.1 Vermiaccumulation and vermiextraction -- 2.1.2 Vermitransformation -- 2.1.3 Drilodegradation -- 2.2 Vermiremediation for a cleaner environment and sustainable agriculture (nutrient amendment and degradation of toxins throug ... -- 3. Activity of suitable earthworm species and their associated microbes in composting and remediation -- 3.1 Earthworm species (Perionyx ceylanensis, Metaphire posthuma, Perionyx excavatus, Polypheretima elongata, Eudrilus eugeniae, ... -- 3.2 Structural and functional profiling of microbial diversity in the compost -- 4. Vermiremediation of different plant agro waste -- 4.1 Green manure amended pressmud -- 4.2 Patchouli bagasse mixed with cow dung. , 4.3 Jute mill waste -- 4.4 Lantana camara biomass -- 4.5 Vegetable waste and tree leaves -- 4.6 Pineapple waste -- 4.7 Waste biomass of medicinal herbs mixed with cow dung -- 4.8 Coir pith -- 4.9 Spent mushroom substrate combined with agro-residues -- 4.10 Leafy waste of cauliflower and cabbage -- 4.11 Distillation waste of Citronella plant -- 4.12 Lignocellulosic green waste of Saccharum spontaenum -- 4.13 Cassava peel waste -- 4.14 Banana crop waste -- 4.15 Sugarcane trash -- 4.16 Wetland plant waste -- 4.17 Crop residues -- 4.18 Coffee pulp -- 4.19 Oil palm empty fruit bunch -- 4.20 Water hyacinth and Salvinia sp -- 5. Different properties of plant agro waste compost -- 5.1 Biocidal properties of plant compost -- 5.1.1 Bacterial pathogen inhibition by Lantana compost -- 5.1.2 Tea-based compost inhibits the growth of Rhizoctonia solani in potato plants -- 5.2 Vermicompost's impact on various crop yields -- 6. Conclusion -- Acknowledgments -- References -- Further reading -- 6 - Biochemical alterations of vermicompost produced from Eichhornia crassipes (water hyacinth) and cattle dung -- 1. Introduction -- 2. Materials and methods -- 2.1 Work site -- 2.2 Setting up units -- 2.3 Data collection and analyses -- 3. Results and discussion -- 3.1 Electrical conductivity -- 3.2 pH -- 3.3 Organic carbon -- 3.4 Nitrogen -- 3.5 Phosphate -- 3.6 Potassium -- 3.7 Calcium -- 3.8 Magnesium -- 3.9 Economic analysis -- 4. Conclusion -- References -- 7 - Use of vermicompost and vermiwash for the growth and production of tomatoes (Lycopersicon esculentum Mill.): A ... -- 1. Introduction -- 1.1 Vermicompost -- 1.2 Vermiwash -- 1.3 Soil properties and impact of vermicompost and vermiwash -- 1.4 Impact of vermicompost and vermiwash on plant growth parameters and productivity -- 1.5 Cultivation of tomato (Lycopersicon esculentum Mill.) -- 2. Materials and methods. , 2.1 Vermiwash production -- 2.1.1 Earthworm collection -- 2.1.2 Establishment of vermiwash units -- 2.1.3 Experimental design -- 2.1.4 Observation and measurements -- 2.1.5 Physicochemical analysis -- 2.2 Crop cultivation (tomatoes) -- 2.2.1 Experimental design -- 2.2.2 Sowing to transplanting -- 2.2.3 Fertilization -- 2.2.4 Data collection -- 3. Results and discussion -- 3.1 Vermicompost: physicochemical properties -- 3.2 Vermiwash: physicochemical properties -- 3.3 Cultivation of tomato plants -- 3.3.1 Climatic conditions -- 3.4 Soil: physicochemical properties -- 3.5 Greenhouse experiment -- 3.5.1 Plant height -- 3.5.2 Stem thickness -- 3.5.3 Biomass and root length -- 3.5.4 Production -- 3.6 Field trials -- 3.6.1 Plant height -- 3.6.2 Stem thickness -- 3.7 Biomass and root length -- 3.7.1 Production -- 4. Overall discussion -- 5. Conclusion -- References -- 8 - Earthworm mediated amelioration of heavy metals from solid organic waste: an ecotechnological approach toward v ... -- 1. Introduction -- 2. Sources of heavy metals in organic waste -- 2.1 Agricultural sources -- 2.1.1 Fertilizer -- 2.1.2 Pesticides -- 2.2 Biosolids -- 2.3 Industrial sources -- 3. Different methods applied for heavy metal removal from solid organic waste: a review of phytoremediation -- 3.1 Phytoextraction -- 3.2 Phytostabilization/phytoimmobilization -- 3.3 Phytovolatilization -- 3.4 Phytodegradation -- 3.5 Rhizodegradation -- 4. Role of vermitechnology in reduction of heavy metal load: a case study using paper mill wastes -- 5. Role of microbes in remediation of heavy metals -- 6. Mechanisms involved in combating heavy metal stress in earthworms -- 7. Conclusion -- References -- Further reading -- 9 - Vermicomposting as a tool for removal of heavy metal contaminants from soil and water environment -- 1. Introduction -- 2. Vermicomposting process and raw materials used. , 2.1 Composting -- 2.2 Harvesting of the product -- 3. Importance of vermicomposting -- 4. Vermicomposting for removal of metal ions from- -- 4.1 Detoxification of industrial wastes/sludges using earthworms -- 4.2 Removal of metals by vermicomposting from municipal solid waste -- 4.3 Vermicomposting to remove metal ions from polluted soil -- 4.4 Vermicomposting for wastewater sludge treatment -- 5. Vermicomposting for breaking down of heavy metal in organic pollutants -- 5.1 Immobilization -- 5.2 Reduction -- 5.3 Volatilization -- 5.4 Modification of the rhizosphere -- 6. Safe disposal of metal-enriched compost -- 6.1 Vermiaccumulation -- 6.2 Vermitransformation -- 6.3 Vermidegradation -- 7. Strategies for improving vermiremediation -- 8. Precaution to be taken during vermiremediation -- 9. Conclusions -- References -- 10 - Earthworms and microplastics: Transport from sewage sludge to soil, antibiotic-resistant genes, and soil remed ... -- 1. Introduction -- 1.1 Microplastics in sewage sludge and soil -- 1.2 Presence of antibiotic resistance genes in soil -- 1.3 Earthworms as targets of exposure to contamination and as tools for soil remediation -- 2. Microplastics and antibiotic resistance genes -- 2.1 Co-transport from sewage sludge to and within the soil -- 2.2 Effects on soil systems -- 2.2.1 Effects on earthworms and other soil invertebrates -- 2.2.2 Effects on plants -- 2.2.3 Effects on the soil microbiome -- 3. Impact of earthworms on microplastics and antibiotic resistance -- 3.1 Earthworm-mediated microplastic degradation -- 3.2 Impact of vermicomposting on antibiotic resistance genes -- 4. Discussion -- 5. Conclusions and perspectives -- Acknowledgments -- References -- 11 - Instrumental characterization of matured vermicompost produced from organic waste -- 1. Introduction -- 2. Characteristic of mature vermicompost: a brief overview. , 3. Traditional methods for understanding vermicompost maturity.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...