GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Singapore :Springer,
    Keywords: Bioremediation. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (706 pages)
    Edition: 1st ed.
    ISBN: 9789811943201
    DDC: 628.5
    Language: English
    Note: Intro -- Preface -- Acknowledgments -- Contents -- About the Editors -- Part I: Bioremediation and Biodegradation -- 1: Bioremediation and Functional Metagenomics: Advances, Challenges, and Opportunities -- 1.1 Introduction -- 1.2 Bioremediation -- 1.3 History of Bioremediation -- 1.4 Bioremediation Successes -- 1.5 Mechanism of Bioremediation -- 1.6 Microorganisms Used in Bioremediation -- 1.6.1 Fungi -- 1.6.1.1 Phanerochaete Chrysosporium -- 1.7 Factors Affecting Bioremediation -- 1.7.1 Biotic Factors -- 1.7.1.1 The Availability of Bacteria That Degrade Hydrocarbons -- 1.7.1.2 Competition and Cooperation Among Bacteria -- 1.7.1.3 Exogenous and Indigenous Hydrocarbon-Degrading Bacteria -- 1.7.1.4 Number of Hydrocarbon-Degrading Bacteria -- 1.7.1.5 Redox Potential of the Bacteria -- 1.7.1.6 Effect of Biosurfactants -- 1.7.2 Abiotic Factors -- 1.7.2.1 Contaminant Physical and Chemical Properties -- 1.7.2.2 Hydrocarbon Concentration -- 1.7.2.3 Nutrient Availability -- 1.7.2.4 Oxygen Availability -- 1.7.2.5 Moisture Availability -- 1.7.2.6 Bioavailability -- 1.8 Bioremediation Types -- 1.8.1 Ex Situ Bioremediation -- 1.8.1.1 Treatment in the Solid Phase -- 1.8.1.2 Slurry-Phase Bioremediation -- 1.8.2 In Situ Bioremediation -- 1.9 Bioremediation Approaches for Environmental Clean-Up -- 1.9.1 Ex Situ Bioremediation Approaches -- 1.9.1.1 Biopile -- 1.9.1.2 Biofilter -- 1.9.1.3 Land Farming -- 1.9.1.3.1 Composting -- 1.9.1.4 Bioreactor -- 1.9.2 In Situ Bioremediation Approaches -- 1.9.2.1 Bioventing -- 1.9.2.2 Biosparging -- 1.9.2.3 Bioslurping -- 1.10 Metagenomics -- 1.11 Metagenomics in Bioremediation Process -- 1.12 Metagenomics Research in a Contaminated Environment -- 1.12.1 Sampling from Contaminated Site -- 1.12.2 Extracting the DNA from Contaminated Samples -- 1.12.3 Metagenome Analysis -- 1.12.3.1 Targeted Metagenomics Using a Library. , 1.12.3.1.1 Creating a Metagenomics Library -- 1.12.3.1.2 Screening of Metagenomic Clones -- 1.12.3.1.2.1 Screening Based on a Sequence -- 1.12.3.1.2.2 Function-Driven Sequence -- 1.12.4 Direct Sequencing of Metagenomics -- 1.12.5 Next-Generation Sequencing -- 1.12.6 Bioinformatics Analysis -- 1.12.7 Assembly -- 1.12.8 Binning -- 1.12.9 Annotation -- 1.13 Metagenomics in Bioremediation: Current Challenges and Future -- 1.14 Conclusion -- References -- 2: Bioremediation: Gaining Insights Through Metabolomics -- 2.1 Introduction -- 2.2 Impact of Metabolomics on Bioremediation -- 2.3 Application of Computer in Metabolomic Study -- 2.4 Application of Metabolomics in Space Bioremediation -- 2.5 Future Advancement -- 2.6 Conclusion -- References -- 3: Metagenomics, Microbial Diversity, and Environmental Cleanup -- 3.1 Introduction -- 3.2 Conventional Methods of Gene Sequencing -- 3.2.1 Polymerase Chain Reaction (PCR) -- 3.2.2 Fluorescence In Situ Hybridization (FISH) -- 3.2.3 Amplified Ribosomal DNA Restriction Analysis -- 3.2.4 Ribosomal Intergenic Spacer Analysis -- 3.2.5 DNA Microarrays -- 3.2.6 Randomly Amplified Polymorphic DNA (RAPD) Analysis -- 3.3 Next-Generation Sequencing Techniques -- 3.3.1 Pyrosequencing Technology -- 3.3.2 Roche 454 (GS FLX Plus) -- 3.3.3 Reverse Terminator Technology -- 3.3.3.1 Illumina Solexa -- 3.3.3.2 Ion Torrent -- 3.3.3.3 Sequencing by Ligation Technology -- 3.3.3.4 ABI SOLiD -- 3.4 Metagenomics Sequencing and Its Framework -- 3.5 Tools for Metagenomic Data Analysis -- 3.6 Bioinformatics Tools for Functional Analysis of Metagenome -- 3.7 Application of Metagenomics -- 3.7.1 Food Industries -- 3.7.2 Novel Bioactive Discovery -- 3.7.3 Novel Antimicrobials Discovery -- 3.7.4 Xenobiotic Degradation -- 3.8 Importance of Metagenomics in Bioremediation of Pollutants -- 3.9 Conclusion and Future Perspectives -- References. , 4: Plant-Microbe Associations in Remediation of Contaminants for Environmental Sustainability -- 4.1 Introduction -- 4.2 Plant-Microbe Interaction -- 4.2.1 Endophytic Microbiome -- 4.2.2 Plant Growth-Promoting Rhizobacteria -- 4.2.3 Plant-Released Signals -- 4.2.4 Microbial Signals -- 4.2.5 Quorum Sensing -- 4.3 Remediation of Contaminants by Plant-Microbe Combination -- 4.3.1 Removal of Pollutants from Aquatic Environments -- 4.3.2 Removal of Pollutants from Terrestrial Environment -- 4.3.3 Removal of Pollutants from Atmosphere -- 4.4 Examples of Bacterial-Assisted Phytoremediation -- 4.5 Microbial-Assisted Phytoextraction -- 4.6 Microbial-Assisted Phytostabilisation -- 4.7 Microbial-Assisted Phytovolatilisation -- 4.8 Rhizoremediation -- 4.9 Phytostimulation -- 4.10 Microbial-Assisted Phytodegradation -- 4.11 Challenges Faced During Remediation by Plant-Microbe Associations -- 4.12 Conclusion -- References -- 5: Recent Trends in Bioremediation of Heavy Metals: Challenges and Perspectives -- 5.1 Introduction -- 5.2 Heavy Metal Pollution -- 5.3 Bioremediation of Heavy Metals: Principles, Mechanisms and Factors -- 5.3.1 Principles of Bioremediation -- 5.3.2 Mechanisms of Bioremediation -- 5.3.3 Factors Affecting Bioremediation -- 5.4 Techniques for Detection and Assessment of Heavy Metals in the Environment -- 5.5 Techniques of Bioremediation -- 5.5.1 In Situ Techniques -- 5.5.2 Ex Situ Techniques -- 5.6 Plant-Mediated Heavy Metal Removal -- 5.7 Role of Microbes in Heavy Metal Removal -- 5.8 Recent Advancement in Heavy Metal Removal Techniques -- 5.9 Advantages and Limitations -- 5.10 Application and Future Prospects of Bioremediation -- 5.11 Conclusions -- References -- 6: Enzyme Technology for Remediation of Contaminants in the Environment -- 6.1 Introduction -- 6.2 Enzyme as Contaminant Sterilizing Agent -- 6.3 Pollutants. , 6.3.1 Organic Pollutants -- 6.3.1.1 Nitro Compounds -- 6.3.1.2 Dyes -- 6.3.1.3 Organophosphorus Hydrolase -- 6.3.1.4 Cytochrome P450 Monooxygenase -- 6.3.1.5 Peroxidase from Horseradish -- 6.3.2 Inorganic Pollutants -- 6.3.2.1 Arsenic -- 6.3.2.2 Chromium -- 6.3.2.3 Mercury -- 6.3.2.4 Lead -- 6.4 Microbial Enzymes in Bioremediation -- 6.4.1 Microbial Oxidoreductase -- 6.4.2 Microbial Laccases -- 6.4.3 Microbial Oxygenases -- 6.4.3.1 Monooxygenases -- 6.4.3.2 Microbial Dioxygenases -- 6.5 Strategies for Overcoming Difficulties Associated with the Enzyme Technology -- 6.6 Plants and their Associated Enzymes: A Agents for Decontamination -- 6.7 Conclusion -- References -- Part II: Environmental Pollution and Wastewater Treatment -- 7: Environmental Toxicity, Health Hazards, and Bioremediation Strategies for Removal of Microplastics from Wastewater -- 7.1 Introduction -- 7.2 Sources of Microplastics in Wastewater -- 7.3 Properties of Microplastics -- 7.4 Ecotoxicity and Health Hazards of Microplastics -- 7.5 Factors Affecting Toxicity of Microplastics -- 7.6 Techniques for Characterization of Microplastics in Wastewater -- 7.7 Bioremediation Strategies for Microplastics -- 7.7.1 Bacterial Degradation of Microplastics -- 7.7.2 Fungal Degradation of Microplastics -- 7.7.3 Microalgal Degradation of Microplastics -- 7.7.4 Microbial Consortia in Microplastics Degradation -- 7.7.5 Microbial Biofilm in Microplastics Degradation -- 7.7.6 Bioreactor Systems for Microplastic Removal from Wastewater -- 7.8 Challenges and Future Perspectives -- 7.9 Conclusion and Recommendations -- References -- 8: Microbial Community Composition and Functions in Activated Sludge Treatment System -- 8.1 Introduction -- 8.2 Characteristics of Activated Sludge -- 8.3 Microbial Diversity in Activated Sludge. , 8.4 Enzyme Activity and Associated Physiological Function of Microbiome in Activated Sludge -- 8.5 Antibiotic Resistance Genes of Activated Sludge -- 8.6 Future Challenges and Opportunities -- 8.7 Conclusion -- References -- 9: Decontamination and Management of Industrial Wastewater Using Microorganisms Under Aerobic Condition -- 9.1 Introduction -- 9.2 Physical and Chemical Attributes of Wastewater -- 9.3 Biological Parameters of Wastewater -- 9.4 Aerobic Treatment of Wastewater -- 9.5 Advanced Biological Wastewater Treatment Technologies -- 9.6 Treatment of Sludge After Treatment of Wastewater -- 9.7 Management and Regulation for Quality Control and Quality Assurance of WTPs -- 9.8 Conclusions -- References -- 10: Omics in Industrial Wastewater Treatment -- 10.1 Introduction -- 10.2 The Composition of Industrial Wastewater -- 10.2.1 Food and Dairy Industry -- 10.2.2 Paper and Pulp Industry -- 10.2.3 Textile Industry -- 10.2.4 Mining and Quarry Industry -- 10.2.5 Chemical Industry -- 10.2.6 Leather and Tannery Industry -- 10.3 Industrial Wastewater Treatment Methods -- 10.3.1 Physical Wastewater Treatment Processes -- 10.3.2 Chemical Wastewater Treatment Processes -- 10.3.3 Biological Treatment of Wastewater -- 10.3.3.1 Aerobic Treatment -- 10.3.3.2 Anaerobic Treatment -- 10.4 Application of Omics in Biological Treatment -- 10.4.1 Omics Approaches in Wastewater Treatment -- 10.4.2 Omics in Remediation of Organic Pollutants -- 10.4.3 Omics for the Remediation of Metal Species -- 10.4.4 Genomic Information for Industrial Wastewater Treatment -- 10.5 Challenges, Limitations, and Futuristic Approaches -- References -- 11: Microalgae in Wastewater Treatment and Biofuel Production: Recent Advances, Challenges, and Future Prospects -- 11.1 Introduction -- 11.2 Benefits of Using Microalgae for Environmental Applications. , 11.3 Techniques for Microalgae Culture.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...