GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-06
    Description: The pre-industrial millennium is among the periods selected by the Paleoclimate Model Intercomparison Project (PMIP) for experiments contributing to the sixth phase of the Coupled Model Intercomparison Project (CMIP6) and the fourth phase of the PMIP (PMIP4). The past1000 transient simulations serve to investigate the response to (mainly) natural forcing under background conditions not too different from today, and to discriminate between forced and internally generated variability on interannual to centennial timescales. This paper describes the motivation and the experimental set-ups for the PMIP4-CMIP6 past1000 simulations, and discusses the forcing agents orbital, solar, volcanic, and land use/land cover changes, and variations in greenhouse gas concentrations. The past1000 simulations covering the pre-industrial millennium from 850 Common Era (CE) to 1849 CE have to be complemented by historical simulations (1850 to 2014 CE) following the CMIP6 protocol. The external forcings for the past1000 experiments have been adapted to provide a seamless transition across these time periods. Protocols for the past1000 simulations have been divided into three tiers. A default forcing data set has been defined for the Tier 1 (the CMIP6 past1000) experiment. However, the PMIP community has maintained the flexibility to conduct coordinated sensitivity experiments to explore uncertainty in forcing reconstructions as well as parameter uncertainty in dedicated Tier 2 simulations. Additional experiments (Tier 3) are defined to foster collaborative model experiments focusing on the early instrumental period and to extend the temporal range and the scope of the simulations. This paper outlines current and future research foci and common analyses for collaborative work between the PMIP and the observational communities (reconstructions, instrumental data).
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-02-01
    Description: The Ocean Model Intercomparison Project (OMIP) is an endorsed project in the Coupled Model Intercomparison Project Phase 6 (CMIP6). OMIP addresses CMIP6 science questions, investigating the origins and consequences of systematic model biases. It does so by providing a framework for evaluating (including assessment of systematic biases), understanding, and improving ocean, sea-ice, tracer, and biogeochemical components of climate and earth system models contributing to CMIP6. Among the WCRP Grand Challenges in climate science (GCs), OMIP primarily contributes to the regional sea level change and near-term (climate/decadal) prediction GCs. OMIP provides (a) an experimental protocol for global ocean/sea-ice models run with a prescribed atmospheric forcing; and (b) a protocol for ocean diagnostics to be saved as part of CMIP6. We focus here on the physical component of OMIP, with a companion paper (Orr et al., 2016) detailing methods for the inert chemistry and interactive biogeochemistry. The physical portion of the OMIP experimental protocol follows the interannual Coordinated Ocean-ice Reference Experiments (CORE-II). Since 2009, CORE-I (Normal Year Forcing) and CORE-II (Interannual Forcing) have become the standard methods to evaluate global ocean/sea-ice simulations and to examine mechanisms for forced ocean climate variability. The OMIP diagnostic protocol is relevant for any ocean model component of CMIP6, including the DECK (Diagnostic, Evaluation and Characterization of Klima experiments), historical simulations, FAFMIP (Flux Anomaly Forced MIP), C4MIP (Coupled Carbon Cycle Climate MIP), DAMIP (Detection and Attribution MIP), DCPP (Decadal Climate Prediction Project), ScenarioMIP, HighResMIP (High Resolution MIP), as well as the ocean/sea-ice OMIP simulations
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Highlights: • Multi-centennial oscillation with 100–200 years periods is evident in proxy data and model simulations during the Holocene. • Multi-centennial oscillation is a global signal and is more significant in the Northern Hemisphere high latitudes. • None of the external forcings is found to be the sole driver of the multi-centennial variability. • It indicates the multi-centennial oscillation may be due to potential internal drivers and essential feedbacks. Abstract: Variability on centennial to multi-centennial timescales is mentioned as a feature in reconstructions of the Holocene climate. As more long transient model simulations with complex climate models become available and efforts have been made to compile large proxy databases, there is now a unique opportunity to study multi-centennial variability with greater detail and a large amount of data than earlier. This paper presents a spectral analysis of transient Holocene simulations from 9 models and 120 proxy records to find the common signals related to oscillation periods and geographic dependencies and discuss the implications for the potential driving mechanisms. Multi-centennial variability is significant in most proxy records, with the dominant oscillation periods around 120–130 years and an average of 240 years. Spectra of model-based global mean temperature (GMT) agree well with proxy evidence with significant multi-centennial variability in all simulations with the dominant oscillation periods around 120–150 years. It indicates a comparatively good agreement between model and proxy data. A lack of latitudinal dependencies in terms of oscillation period is found in both the model and proxy data. However, all model simulations have the highest spectral density distributed over the Northern hemisphere high latitudes, which could indicate a particular variability sensitivity or potential driving mechanisms in this region. Five models also have differentiated forcings simulations with various combinations of forcing agents. Significant multi-centennial variability with oscillation periods between 100 and 200 years is found in all forcing scenarios, including those with only orbital forcing. The different forcings induce some variability in the system. Yet, none appear to be the predominant driver based on the spectral analysis. Solar irradiance has long been hypothesized to be a primary driver of multi-centennial variability. However, all the simulations without this forcing have shown significant multi-centennial variability. The results then indicate that internal mechanisms operate on multi-centennial timescales, and the North Atlantic-Arctic is a region of interest for this aspect.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Numerical modeling enables a comprehensive understanding not only of the Earth's system today, but also of the past. To date, a significant amount of time and effort has been devoted to paleoclimate modeling and analysis, which involves the latest and most advanced Paleoclimate Modelling Intercomparison Project phase 4 (PMIP4). The definition of seasonality, which is influenced by slow variations in the Earth's orbital parameters, plays a key role in determining the calculated seasonal cycle of the climate. In contrast to the classical calendar used today, where the lengths of the months and seasons are fixed, the angular calendar calculates the lengths of the months and seasons according to a fixed number of degrees along the Earth's orbit. When comparing simulation results for different time intervals, it is essential to account for the angular calendar to ensure that the data for comparison are from the same position along the Earth's orbit. Most models use the classical calendar, which can lead to strong distortions of the monthly and seasonal values, especially for the climate of the past. Here, by analyzing daily outputs from multiple PMIP4 model simulations, we examine calendar effects on surface air temperature and precipitation under mid-Holocene, Last Interglacial, and pre-industrial climate conditions. We came to the following conclusions. (a) The largest cooling bias occurs in boreal autumn when the classical calendar is applied for the mid-Holocene and Last Interglacial, due to the fact that the vernal equinox is fixed on 21 March. (b) The sign of the temperature anomalies between the Last Interglacial and pre-industrial in boreal autumn can be reversed after the switch from the classical to angular calendar, particularly over the Northern Hemisphere continents. (c) Precipitation over West Africa is overestimated in boreal summer and underestimated in boreal autumn when the classical seasonal cycle is applied. (d) Finally, month-length adjusted values for surface air temperature and precipitation are very similar to the day-length adjusted values, and therefore correcting the calendar based on the monthly model results can largely reduce the artificial bias. In addition, we examine the calendar effects in three transient simulations for 6–0 ka by AWI-ESM, MPI-ESM, and IPSL-CM. We find significant discrepancies between adjusted and unadjusted temperature values over continents for both hemispheres in boreal autumn, while for other seasons the deviations are relatively small. A drying bias can be found in the summer monsoon precipitation in Africa (in the classical calendar), whereby the magnitude of bias becomes smaller over time. Overall, our study underlines the importance of the application of calendar transformation in the analysis of climate simulations. Neglecting the calendar effects could lead to a profound artificial distortion of the calculated seasonal cycle of surface air temperature and precipitation.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: State-of-the-art Earth system models typically employ grid spacings of O(100 km), which is too coarse to explicitly resolve main drivers of the flow of energy and matter across the Earth system. In this paper, we present the new ICON-Sapphire model configuration, which targets a representation of the components of the Earth system and their interactions with a grid spacing of 10 km and finer. Through the use of selected simulation examples, we demonstrate that ICON-Sapphire can (i) be run coupled globally on seasonal timescales with a grid spacing of 5 km, on monthly timescales with a grid spacing of 2.5 km, and on daily timescales with a grid spacing of 1.25 km; (ii) resolve large eddies in the atmosphere using hectometer grid spacings on limited-area domains in atmosphere-only simulations; (iii) resolve submesoscale ocean eddies by using a global uniform grid of 1.25 km or a telescoping grid with the finest grid spacing at 530 m, the latter coupled to a uniform atmosphere; and (iv) simulate biogeochemistry in an ocean-only simulation integrated for 4 years at 10 km. Comparison of basic features of the climate system to observations reveals no obvious pitfalls, even though some observed aspects remain difficult to capture. The throughput of the coupled 5 km global simulation is 126 simulated days per day employing 21 % of the latest machine of the German Climate Computing Center. Extrapolating from these results, multi-decadal global simulations including interactive carbon are now possible, and short global simulations resolving large eddies in the atmosphere and submesoscale eddies in the ocean are within reach.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...