GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (54)
  • AGU (American Geophysical Union)  (10)
  • HWU  (4)
  • GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel  (3)
  • Kiel : GEOMAR  (3)
  • 11
    Publication Date: 2017-12-07
    Description: Hydrocarbon-rich fluids expelled at mud volcanoes (MVs) may contribute significantly to the carbon budget of the oceans, but little is known about the long-term variation in fluid fluxes at MVs. The Darwin MV is one of more than 40 MVs located in the Gulf of Cadiz, but it is unique in that its summit is covered by a thick carbonate crust that has the potential to provide a temporal record of seepage activity. In order to test this idea, we have conducted petrographic, chemical and isotopic analyses of the carbonate crust. In addition a 1-D transport-reaction model was applied to pore fluid data to assess fluid flow and carbonate precipitation at present. The carbonate crusts mainly comprise of aragonite, with a chaotic fabric exhibiting different generations of cementation and brecciation. The crusts consist of bioclasts and lithoclasts (peloids, intraclasts and extraclasts) immersed in a micrite matrix and in a variety of cement types (microsparite, botryoidal, isopachous acicular, radial and splayed fibrous). The carbonates are moderately depleted in 13C (δ13C = − 8.1 to − 27.9‰) as are the pore fluids (δ13C = − 19.1 to − 28.7‰), which suggests that their carbon originated from the oxidation of methane and higher hydrocarbons, like the gases that seep from the MV today. The carbonate δ18O values are as high as 5.1‰, and it is most likely that the crusts formed from 18O-rich fluids derived from dehydration of clay minerals at depth. Pore fluid modelling results indicate that the Darwin MV is currently in a nearly dormant phase (seepage velocities are 〈 0.09 cm yr− 1). Thus, the thick carbonate crust must have formed during past episodes of high fluid flow, alternating with phases of mud extrusion and uplift. Highlights ► Results of pore fluid modelling indicate low seepage activity at localised sites. ► Pore fluids are supersaturated with respect to hydrocarbons of thermogenic origin. ► AOM supports vent fauna and results in the formation of authigenic carbonates. ► The carbonate crust has a brecciated appearance and mainly consists of aragonite. ► The crust formation seems to be regulated by changes in fluid and mudflow activity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-09-23
    Description: Lithium concentration and isotope data (δ7Li) are reported for pore fluids from 18 cold seep locations together with reference fluids from shallow marine environments, a sediment-hosted hydrothermal system and two Mediterranean brine basins. The new reference data and literature data of hydrothermal fluids and pore fluids from the Ocean Drilling Program follow an empirical relationship between Li concentration and δ7Li (δ7Li = −6.0(±0.3) · ln[Li] + 51(±1.2)) reflecting Li release from sediment or rocks and/or uptake of Li during mineral authigenesis. Cold seep fluids display δ7Li values between +7.5‰ and +45.7‰, mostly in agreement with this general relationship. Ubiquitous diagenetic signals of clay dehydration in all cold seep fluids indicate that authigenic smectite–illite is the major sink for light pore water Li in deeply buried continental margin sediments. Deviations from the general relationship are attributed to the varying provenance and composition of sediments or to transport-related fractionation trends. Pore fluids on passive margins receive disproportionally high amounts of Li from intensely weathered and transported terrigenous matter. By contrast, on convergent margins and in other settings with strong volcanogenic input, Li concentrations in pore water are lower because of intense Li uptake by alteration minerals and, most notably, adsorption of Li onto smectite. The latter process is not accompanied by isotope fractionation, as revealed from a separate study on shallow sediments. A numerical transport-reaction model was applied to simulate Li isotope fractionation during upwelling of pore fluids. It is demonstrated that slow pore water advection (order of mm a−1) suffices to convey much of the deep-seated diagenetic Li signal into shallow sediments. If carefully applied, Li isotope systematics may, thus, provide a valuable record of fluid/mineral interaction that has been inherited several hundreds or thousands of meters below the actual seafloor fluid escape structure.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-09-23
    Description: Several known gas seep sites along the Hikurangi Margin off the east coast of New Zealand were surveyed by marine controlled source electromagnetic (CSEM) experiments. A bottom-towed electric dipole–dipole system was used to reveal the occurrence of gas hydrate and methane related to the seeps. The experiments were part of the international multidisciplinary research program “New Vents” carried out on German R/V Sonne in 2007 (cruise SO191) to study key parameters controlling the release and transformation of methane from marine cold vents and shallow gas hydrate deposits. Two CSEM lines have been surveyed over known seep sites on Opouawe Bank in the Wairarapa region off the SE corner of the North Island. The data have been inverted to sub-seafloor apparent resistivity profiles and one-dimensional layered models. Clearly anomalous resistivities are coincident with the location of two gas seep sites, North Tower and South Tower on Opouawe Bank. A layer of concentrated gas hydrate within the uppermost 100 m below the seafloor is likely to cause the anomalous resistivities, but free gas and thick carbonate crusts may also play a role. Seismic data show evidence of fault related venting which may also indicate the distribution of gas hydrates and/or authigenic carbonate. Geochemical profiles indicate an increase of methane flux and the formation of gas hydrate in the shallow sediment section around the seep sites. Takahe is another seep site in the area where active venting, higher heat flow, shallow gas hydrate recovered from cores, and seismic fault planes, but only moderately elevated resistivities have been observed. The reasons could be a) the gas hydrate concentration is too low, even though methane venting is evident, b) strong temporal or spatial variation of the seep activity, and c) the thermal anomaly indicates rather temperature driven fluid expulsion that hampers the formation of gas hydrate beneath the vent.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-09-23
    Description: Highlights • Polypropylene and biodegradable plastic bags were incubated in marine sediments. • Bacterial colonization was highest on biodegradable plastic bags. • None of the two bag types showed signs of degradation after 98 days. • Marine sediments probably represent a long-term sink for both types of litter. Abstract To date, the longevity of plastic litter at the sea floor is poorly constrained. The present study compares colonization and biodegradation of plastic bags by aerobic and anaerobic benthic microbes in temperate fine-grained organic-rich marine sediments. Samples of polyethylene and biodegradable plastic carrier bags were incubated in natural oxic and anoxic sediments from Eckernförde Bay (Western Baltic Sea) for 98 days. Analyses included (1) microbial colonization rates on the bags, (2) examination of the surface structure, wettability, and chemistry, and (3) mass loss of the samples during incubation. On average, biodegradable plastic bags were colonized five times higher by aerobic and eight times higher by anaerobic microbes than polyethylene bags. Both types of bags showed no sign of biodegradation during this study. Therefore, marine sediment in temperate coastal zones may represent a long-term sink for plastic litter and also supposedly compostable material.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 42 (18). pp. 7663-7672.
    Publication Date: 2017-04-10
    Description: Current estimates suggest that more than 60% of the global seafloor are covered by millions of abyssal hills and mountains. These features introduce spatial fluid-dynamic granularity whose influence on deep-ocean sediment biogeochemistry is unknown. Here we compare biogeochemical surface-sediment properties from a fluid-dynamically well-characterized abyssal hill and upstream plain: (1) In hill sediments, organic-carbon and -nitrogen contents are only about half as high as on the plain while proteinaceous material displays less degradation; (2) on the hill, more coarse-grained sediments (reducing particle surface area) and very variable calcite contents (influencing particle surface charge) are proposed to reduce the extent, and influence compound-specificity, of sorptive organic-matter preservation. Further studies are needed to estimate the representativeness of the results in a global context. Given millions of abyssal hills and mountains, their integrative influence on formation and composition of deep-sea sediments warrants more attention.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-09-23
    Description: Highlights • PetroMod is the 1st basin modelling software including methane hydrate simulation. • The Gas hydrate module includes physical, thermodynamic, and kinetic properties. • PetroMod simulates the evolution over time of the GHSZ. • PetroMod includes a kinetic for the organic matter degradation at low temperature. Abstract Within the German gas hydrate initiative SUGAR, a new 2-D/3-D module simulating the biogenic generation of methane from organic matter and the formation of gas hydrates has been developed and included in the petroleum systems modelling software package PetroMod®. Typically, PetroMod® simulates the thermogenic generation of multiple hydrocarbon components (oil and gas), their migration through geological strata, finally predicting oil and gas accumulations in suitable reservoir formations. We have extended PetroMod® to simulate gas hydrate accumulations in marine and permafrost environments by the implementation of algorithms describing (1) the physical, thermodynamic, and kinetic properties of gas hydrates; and (2) a kinetic continuum model for the microbially mediated, low temperature degradation of particulate organic carbon in sediments. Additionally, the temporal and spatial resolutions of PetroMod® were increased in order to simulate processes on time scales of hundreds of years and within decimetres of spatial extension. In order to validate the abilities of the new hydrate module, we present here results of a theoretical layer-cake model. The simulation runs predict the spatial distribution and evolution in time of the gas hydrate stability field, the generation and migration of thermogenic and biogenic methane gas, and its accumulation as gas hydrates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-02-01
    Description: Takahe seep, located on the Opouawe Bank, Hikurangi Margin, is characterized by a well-defined subsurface seismic chimney structure ca. 80,500 m2 in area. Sub-seafloor geophysical data based on acoustic anomaly layers indicated the presence of gas hydrate and free gas layers within the chimney structure. Reaction-transport modeling was applied to porewater data from 11 gravity cores to constrain methane turnover rates and benthic methane fluxes in the upper 10 m. Model results show that methane dynamics were highly variable due to transport and dissolution of ascending gas. The dissolution of gas (up to 3761 mmol m−2 yr−1) dwarfed the rate of methanogenesis within the simulated sediment column (2.6 mmol m−2 yr−1). Dissolved methane is mainly consumed by anaerobic oxidation of methane (AOM) at the base of the sulfate reduction zone and trapped by methane hydrate formation below it, with maximum rates in the central part of the chimney (946 and 2420 mmol m−2 yr−1, respectively). A seep-wide methane budget was constrained by combining the biogeochemical model results with geophysical data and led to estimates of AOM rates, gas hydrate formation and benthic dissolved methane fluxes of 3.68 × 104 mol yr−1, 73.85 × 104 mol yr−1and 1.19 × 104 mol yr−1, respectively. A much larger flux of methane probably escapes in gaseous form through focused bubble vents. The approach of linking geochemical model results with spatial geophysical data put forward here can be applied elsewhere to improve benthic methane turnover rates from limited single spot measurements to larger spatial scales.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Elsevier
    In:  [Talk] In: Goldschmidt Conference 2009 "Challenges to Our Volatile Planet", 21.-26.06.2009, Davos, Switzerland ; A1249 .
    Publication Date: 2019-09-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-09-08
    Description: The weathering of silicate minerals exposed on the continents is the largest sink of atmospheric CO2 on time scales of millions of years. The rate of this process is positively correlated with global mean temperature and atmospheric CO2 concentration, resulting in a negative feedback that stabilizes Earths’ climate (Berner, 2004). Detrital silicates derived from the physical denudation of the continents are a major component of marine sediments (Li and Schoonmaker, 2003). However, their geochemical behaviour is poorly understood and they are considered to be unimportant to the long-term carbon cycle. We show that in organic matter-rich sediments of the Sea of Okhotsk detrital silicates undergo intense weathering. This process is likely favoured by microbial activity, which lowers pore water pH and releases dissolved humic substances, and by the freshness of detrital silicates which originate from the cold, poorly weathered Amur River basin. Numerical simulations of early diagenesis show that submarine weathering rates in our study area are comparable to average continental weathering rates (Gaillardet et al., 1999). Furthermore, silicate weathering seems to be widespread in organic matter-rich sediments of continental margins, suggesting the existence of a significant CO2 sink there. These findings imply a greater efficiency of the silicate weathering engine also at low surface temperatures, resulting in a weakening of the negative feedback between pCO2, climate evolution and silicate weathering.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    HWU
    In:  [Poster] In: 7. International Conference on Gas Hydrates (ICGH 2011), 17.-21.07.2011, Edinburgh, Scotland, United Kingdom . Proceedings of the 7th International Conference on Gas Hydrates (ICGH2011) ; 591/1-9 .
    Publication Date: 2012-03-16
    Description: The production of natural gas via injection of fossil-fuel derived CO2 into submarine gas hydrate reservoirs can be an example of tapping a hydrocarbon energy source in a CO2-neutral manner. However, the industrial application of this method is technically challenging. Thus, prior to feasibility testing in the field, multi-scale laboratory experiments and adapted reaction-modeling are needed. To this end, high-pressure flow-through reactors of 15 and 2000 mL sample volume were constructed and tested. Process parameters (P, T, Q, fluid composition) are defined by a fluid supply and conditioning unit to enable simulation of natural fluid-flow scenarios for a broad range of sedimentary settings. Additional Raman- and NMR-spectroscopy aid in identifying the most efficient pathway for CH4 extraction from hydrates via CO2 injection on both microscopic and macroscopic level. In this study we present experimental set-up and design of the highpressure flow-through reactors as well as CH4 yields from H4-hydrate decomposition experiments using CO2-rich brines and pure liquefied CO2.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...