GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Biological interfaces. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (274 pages)
    Edition: 1st ed.
    ISBN: 9783319741444
    Series Statement: Biologically-Inspired Systems Series ; v.10
    Language: English
    Note: Intro -- Preface: Diversity of the Physical Phenomena in Biological Surfaces -- References -- Contents -- Contributors -- Part I: Receptors -- Chapter 1: Cuticle as Functional Interface in Insect Infrared Receptors -- 1.1 Introduction -- 1.2 Physical Properties of Infrared Radiation -- 1.3 IR Receptors in Pyrophilous Insects -- 1.4 Bolometer Like IR Receptors in Acanthocnemus and Merimna -- 1.4.1 The 'little ash beetle' Acanthocnemus nigricans -- 1.4.1.1 Pyrophilous Behavior -- 1.4.1.2 The Prothoracic IR Organs -- 1.4.2 IR receptors in Merimna atrata -- 1.4.2.1 Pyrophilous Behavior -- 1.4.2.2 The Abdominal IR Organs -- 1.5 Photomechanic IR Receptors in Melanophila Beetles and Pyrophilous Flat Bugs of the Genus Aradus -- 1.5.1 IR Pit Organs in Melanophila Beetles -- 1.5.1.1 Pyrophilous Behaviour -- 1.5.1.2 The Metathoracic IR Organs -- 1.5.2 IR Receptors in Pyrophilous Aradus Bugs -- 1.5.2.1 Pyrophilous Behavior -- 1.5.2.2 The Thoracic IR Organs -- 1.6 Discussion -- 1.6.1 The Cuticle As an Effective IR Absorber -- 1.6.2 Different Routes of Converting IR Quantum Energy into Bioelectrical Signals -- References -- Part II: Photonics -- Chapter 2: Arthropod Corneal Nanocoatings: Diversity, Mechanisms, and Functions -- 2.1 Introduction -- 2.2 Functions of Corneal Nanostructures -- 2.2.1 Optical Properties of the Arthropod Eye Nanocoatings -- 2.2.2 Anti-Wetting, Self-Cleaning and Antimicrobial Properties of Arthropod Corneal Nanocoatings -- 2.3 Hypotheses of Formation of Corneal Nanostructures -- 2.3.1 Physical, Chemical and Biological Mechanisms of Formation of Corneal Nanostructures -- 2.3.1.1 The Reaction-Diffusion Model -- 2.3.1.2 Formation of Order in the Nipple Arrays -- 2.3.1.3 The Block Copolymer Model of Nanostructure Formation -- 2.3.1.4 The Genetics of the Nanostructure Formation -- 2.3.2 Ontogenesis of the Corneal Nanostructures. , References -- Chapter 3: Photonics in Nature: From Order to Disorder -- 3.1 Introduction -- 3.2 Theoretical Background -- 3.2.1 The Fourier Transform -- 3.2.2 Structure Factor and Crystallography -- 3.2.3 Light Coherence -- 3.3 Ordered and Quasi-Ordered Photonic Structures -- 3.3.1 One-Dimensional Photonic Structures -- 3.3.1.1 Periodic Multilayers in Nature -- 3.3.1.2 Zig-Zag, Chirped, and Fractal Multilayers -- 3.3.1.3 Helicoids -- 3.3.1.4 Diffraction Gratings -- 3.3.2 Two-Dimensional Photonic Structures -- 3.3.2.1 Modelling of Photonic Structures -- 3.3.2.2 Analysing Order and Disorder in 2D Structures -- 3.3.2.3 Diatoms -- 3.3.3 Three-Dimensional Photonic Structures -- 3.3.3.1 Polycrystalline Structures -- 3.3.3.2 Short-Range Ordered Structures -- 3.4 Random Photonic Structures -- 3.4.1 Refractive Index Matching: Diphylleia grayi -- 3.4.2 The Whitest Natural Material: The Cyphochilus Genus -- 3.5 Hierarchical Structures at the Surface -- 3.5.1 Diffractive Surfaces on the Morpho Butterfly Wings -- 3.5.1.1 Wing Structure and Appearance -- 3.5.1.2 Hierarchical Organisation -- 3.5.2 Pixellated Surfaces -- 3.6 Outlook -- References -- Part III: Wetting Phenomena -- Chapter 4: Moisture-Harvesting Reptiles: A Review -- 4.1 The Integument's Diverse Functions -- 4.2 Moisture-Harvesting Reptiles -- 4.3 Stereotypical Moisture-Harvesting Behavior -- 4.4 Adaptations of the Integument to Enable Moisture-Harvesting -- 4.4.1 Improved Wettability by Micro Structure -- 4.4.2 Directional Water Transport in Channels -- 4.5 Outlook: Biomimetical Transfer -- References -- Chapter 5: The Velamen Radicum of Orchids: A Special Porous Structure for Water Absorption and Gas Exchange -- 5.1 The Velamen Radicum -- 5.2 The Structure of the Velamen Radicum -- 5.3 The Special Case of Leafless Orchids -- 5.4 Final Remarks -- References. , Chapter 6: Sucking the Oil: Adsorption Ability of Three-Dimensional Epicuticular Wax Coverages in Plants As a Possible Mechanism Reducing Insect Wet Adhesion -- 6.1 Introduction -- 6.2 Results -- 6.2.1 Modification of the Water Drops -- 6.2.2 Modification of the Oil Drops -- 6.3 Discussion -- 6.4 Methods -- 6.4.1 Samples -- 6.4.2 Experiments -- 6.4.2.1 Cryo Scanning Electron Microscopy -- 6.4.2.2 Apparent Contact Angle Measurements -- 6.4.2.3 Adsorption Experiments -- 6.4.2.4 Numerical Analysis of Experimental Data -- References -- Part IV: Adhesion -- Chapter 7: Examples of Bioadhesives for Defence and Predation -- 7.1 Introduction -- 7.2 Defence -- 7.2.1 Centipedes -- 7.2.1.1 Lithobiomorpha - Telopodal Glands -- 7.2.1.2 Geophilomorpha - Sternal (Defensive) Glands -- 7.2.2 Salamanders -- 7.2.3 Hagfish -- 7.3 Predation -- 7.3.1 Trapping Approach -- 7.3.1.1 Glowworm -- 7.3.1.2 Comb Jellies -- 7.3.2 Direct Attack -- 7.3.2.1 Spitting Spider -- 7.3.2.2 Velvet Worms -- References -- Chapter 8: Visualization of the Number of Tarsal Adhesive Setae Used During Normal and Ceiling Walk in a Ladybird Beetle: A Case Study -- 8.1 Introduction -- 8.2 Materials and Methods -- 8.2.1 Insects -- 8.2.2 Visualization of Applied Tarsal Setae During Normal and Ceiling Walk -- 8.2.3 Estimation of the Number of Setae Used During Normal and Ceiling Walk -- 8.3 Results and Discussion -- 8.4 Summary and Outlook -- References -- Chapter 9: Comparative Study of Tongue Surface Microstructure and Its Possible Functional Significance in Frogs -- 9.1 Introduction -- 9.2 Experimental -- 9.3 Results -- 9.3.1 Tongue Surface Structures -- 9.3.2 Three-Dimensional Organization of the Tongue Tissue -- 9.4 Discussion -- References -- Part V: Friction -- Chapter 10: Mucus Matters: The Slippery and Complex Surfaces of Fish -- 10.1 Introduction - Fish Surfaces. , 10.2 Fish Scales - Complex Surfaces -- 10.2.1 Scale Types: A Classification -- 10.2.2 Hypotheses for Functional Diversity in Scales -- 10.2.3 Investigating Scales - SEM, μCT, Histology, and Profilometry -- 10.3 Slippery Surfaces - How Mucus Changes Fish Skin Texture -- 10.3.1 Fish Surfaces with Mucus -- 10.3.2 What Mucus Means for Hypotheses of Function -- 10.4 Concluding Remarks -- References -- Chapter 11: Surface-Contacts During Mating in Beetles: Stiffness Gradient of the Beetle Penis Facilitates Propulsion in the Spiraled Female Spermathecal Duct -- 11.1 Introduction -- 11.2 Results -- 11.2.1 Autofluorescence Composition Along the Flagellums -- 11.2.2 Numerical Simulation -- 11.3 Discussion -- 11.4 Methods -- 11.4.1 Autofluorescence Composition of the Male Flagellum and Female Spermathecal Duct -- 11.4.2 Numerical Model -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Highlights • Polypropylene and biodegradable plastic bags were incubated in marine sediments. • Bacterial colonization was highest on biodegradable plastic bags. • None of the two bag types showed signs of degradation after 98 days. • Marine sediments probably represent a long-term sink for both types of litter. Abstract To date, the longevity of plastic litter at the sea floor is poorly constrained. The present study compares colonization and biodegradation of plastic bags by aerobic and anaerobic benthic microbes in temperate fine-grained organic-rich marine sediments. Samples of polyethylene and biodegradable plastic carrier bags were incubated in natural oxic and anoxic sediments from Eckernförde Bay (Western Baltic Sea) for 98 days. Analyses included (1) microbial colonization rates on the bags, (2) examination of the surface structure, wettability, and chemistry, and (3) mass loss of the samples during incubation. On average, biodegradable plastic bags were colonized five times higher by aerobic and eight times higher by anaerobic microbes than polyethylene bags. Both types of bags showed no sign of biodegradation during this study. Therefore, marine sediment in temperate coastal zones may represent a long-term sink for plastic litter and also supposedly compostable material.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...