GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-07-19
    Description: The late-tectonic 511.4 ± 0.6 Ma-old Nomatsaus intrusion (Donkerhoek batholith, Damara orogen, Namibia) consists of moderately peraluminous, magnesian, calc-alkalic to calcic granites similar to I-type granites worldwide. Major and trace-element variations and LREE and HREE concentrations in evolved rocks imply that the fractionated mineral assemblage includes biotite, Fe–Ti oxides, zircon, plagioclase and monazite. Increasing K2O abundance with increasing SiO2 suggests accumulation of K-feldspar; compatible with a small positive Eu anomaly in the most evolved rocks. In comparison with experimental data, the Nomatsaus granite was likely generated from meta-igneous sources of possibly dacitic composition that melted under water-undersaturated conditions (X H2O: 0.25–0.50) and at temperatures between 800 and 850 °C, compatible with the zircon and monazite saturation temperatures of 812 and 852 °C, respectively. The Nomatsaus granite has moderately radiogenic initial 87Sr/86Sr ratios (0.7067–0.7082), relatively radiogenic initial εNd values (− 2.9 to − 4.8) and moderately evolved Pb isotope ratios. Although initial Sr and Nd isotopic compositions of the granite do not vary with SiO2 or MgO contents, fSm/Nd and initial εNd values are negatively correlated indicating limited assimilation of crustal components during monazite-dominated fractional crystallization. The preferred petrogenetic model for the generation of the Nomatsaus granite involves a continent–continent collisional setting with stacking of crustal slices that in combination with high radioactive heat production rates heated the thickened crust, leading to the medium-P/high-T environment characteristic of the southern Central Zone of the Damara orogen. Such a setting promoted partial melting of metasedimentary sources during the initial stages of crustal heating, followed by the partial melting of meta-igneous rocks at mid-crustal levels at higher P–T conditions and relatively late in the orogenic evolution.
    Description: Deutsche Forschungsgemeinschaft
    Description: Universität Hamburg (1037)
    Keywords: ddc:552.3 ; Nomatsaus granite ; Donkerhoek batholith ; Damara Orogen ; Radiogenic isotopes ; U–Pb monazite geochronology
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-26
    Description: We present new geochemical and isotopic data for rock samples from two island arc volcanoes, Erromango and Vulcan Seamount, and from a 500 m thick stratigraphic profile of lava flows exposed on the SW flank of Vate Trough back-arc rift of the New Hebrides Island Arc (NHIA). The basalts from the SW rift flank of Vate Trough have ages of ~0.5 Ma but are geochemically similar to those erupting along the active back-arc rift. The weak subduction component in the back-arc basalts implies formation by decompression melting during early rifting and rifting initiation by tectonic processes rather than by lithosphere weakening by arc magma. Melting beneath Vate Trough is probably caused by chemically heterogeneous and hot mantle that flows in from the North Fiji Basin in the east. The melting zone beneath Vate Trough back-arc is separate from that of the arc front, but a weak slab component suggests fluid transport from the slab. Immobile incompatible element ratios in South NHIA lavas overlap with those of the Vate Trough depleted back-arc basalts, suggesting that enriched mantle components are depleted by back-arc melting during mantle flow. The slab component varies from hydrous melts of subducted sediments in the Central NHIA to fluids from altered basalts in the South NHIA. The volcanism of Erromango shows constant compositions for 5 million years, that is, there is no sign for variable depletion of the mantle or for a change of slab components due to collision of the D'Entrecasteaux Ridge as in lava successions further north.
    Keywords: 551.9 ; subduction zone ; back-arc basalt ; sediment subduction
    Language: English
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1866
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The polymetamorphic Early Proterozoic basic metavolcanites of the Kopparåsen greenstone belt, northern Sweden, contain U mineralizations which are confined to Cu-Fe-sulfide mineralizations in mylonitized zones within basic metatuffs and graphite-bearing mica schists. Trace-lead isotope data from sulfides indicate contamination of the sulfide lead with two different lead components at ca. 430 Ma. One lead component was leached from rocks with a 232Th/238U ratio of 3.0–3.2, while the other lead component had evolved in a environment with a lower 232Th/238U ratio (0.0–0.05). The source for this latter lead component underwent a U-Th separation, probably in relation to the formation of the U mineralizations. If this lead component was leached from the U mineralizations, these mineralizations have a 207Pb/206Pb model age of ca. 1,780 Ma, which is less than the least radiogenic lead model age of the supracrustal belt (ca. 2,050 Ma). A possible genetic model for the uranium mineralizations includes the transport of U with an oxidized metamorphic fluid, which was channelled into the permeable zones, and the local reduction of the fluid by sulfides, which caused the precipitation of U.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1866
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The initial lead isotopic composition of metamorphosed and tectonically reworked sulfide deposits is not always preserved, as sulfides easily change their lead isotopic composition through incorporation of lead derived from external fluids or redistribution and recrystallization of the deposit. Sulfide trace-lead and in cases even galena-lead from such deposits may show exceedingly radiogenic lead isotopic compositions. Thus, the initial lead isotopic composition has to be estimated from other minerals. Scapolite, which is a common phase in alteration haloes associated with epigenetic sulfide deposits in northern Sweden, has very low uranium-contents. Therefore, its trace-lead contents could preserve the initial isotopic composition of the ore-forming fluids. As scapolite is more resistant to recrystallization, it is more likely to reflect the original lead isotope signature of the deposit. This is illustrated using scapolite and sulfides from the Pahtohavare Cu-Au deposit in northern Sweden, which is hosted by Palaeoproterozoic mafic tuffites and graphitic schists and was affected by a mild thermal metamorphism during the Caledonian orogeny.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Mineralium deposita 28 (1993), S. 37-46 
    ISSN: 1432-1866
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Early Proterozoic volcanic and sedimentary rocks of the Rappen district in northern Sweden were deposited at a destructive plate margin to the south of the Archaean craton of the western Baltic Shield. The volcano-sedimentary suite was intruded by two generations of early Proterozoic granites at ca. 1.89–1.85 Ga and ca.1.82–1.78 Ga, respectively, and metamorphosed at upper amphibolite facies conditions. Small stratabound iron, copper, and zinc deposits occur in felsic to mafic tuffs and arkosic sediments. Small deposits of molybdenum, tungsten, and uranium formed during the emplacement of the younger granites. The lead isotopic compositions of sulfide trace lead from the various deposits are highly heterogeneous. In the 206Pb/204Pb–207Pb/204Pb diagram they fall on mixing arrays between little evolved early Proterozoic lead and highly radiogenic Caledonian lead. The least radiogenic lead isotopic compositions from the various deposits have a wide range of 207Pb/204Pb ratios and thus indicate variable involvement of Archaean crustal lead in the Proterozoic deposits. Deposits hosted by siliciclastic rocks have higher 207Pb/204Pb ratios than deposits hosted in mafic to felsic tuffites. The lead isotopic heterogeneity suggests that the lead in the various deposits was locally derived and, furthermore, that the sedimentary rocks in part originated from the Archaean craton to the north. Lead mixing arrays in the 206Pb/204Pb–207Pb/204Pb diagram demonstrate that in Paleozoic time radiogenic lead was mobilized and transported in the basement. Source ages calculated from the mixing arrays (ca.1.9 Ga and ca.1.8 Ga) correspond to the age of the Early Proterozoic volcanism and metamorphism respectively. One group of deposits includes lead from at least three sources and illustrates that radiogenic lead was multiply mobilized and transported in the Proterozoic basement. It occurs in deposits that occur in zones that became permeable during the reactivations of the basement.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 21 (2003), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Field data define two lithologically distinct basement-cover sequences within the ultrahigh-pressure metamorphic (UHPM) unit of the Dabie Shan, eastern China. One of the cover units, the Changpu unit, comprises calc-arenitic metasediments in stratigraphic contact with a basement consisting of gneisses of the Yangtze craton. The second cover unit, the Ganghe unit, consists of felsic-intermediate metavolcanics and clastic metasediments. Basement exposure of the Ganghe unit is not known. Fold axes in the Ganghe unit are oblique to those of the Changpu unit, which are parallel to those of the Yangtze gneisses. Preservation of primary textures in some volcanic rocks, and tectonic separation from the Yangtze gneisses by a greenschist facies mylonite, support an interpretation of the Ganghe unit as a low-strain domain. Protolith associations in the Ganghe and Changpu units are compatible with deposition in a rift setting and along a passive continental margin, respectively. A U–Pb single zircon age of 761 ± 33 Ma for volcanoclastic rocks of the Ganghe unit demonstrates a Neoproterozoic deposition age, concordant with inferred rifting at that time. Eclogite facies parageneses in the gneisses and both cover units, along with P–T data demonstrate regional UHPM in the Dabie Shan.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Marbles from Changpu (Dabie Shan, eastern China), subducted to 4.4 GPa, have 87Sr/86Sr values 〈 0.7040. These low 87Sr/86Sr values, which would imply a sedimentation age 〉 2 Ga if considered as primary signature, reflect fluid–rock interaction with a fluid from a low-87Sr/86Sr source. The introduction of low-87Sr/86Sr was paralleled by introduction of Mg and loss of Si, K and Na in such a way that carbonates from the purest marbles have the least evolved Sr isotopic composition. Introduction of Mg is also indicated by the distribution of calcite and dolomite. Calcite forms inclusions in garnet, whereas dolomite is restricted to the matrix. These chemical changes, inferred from the mineralogy, in combination with textural evidence require a mobile metamorphic fluid. P–T–X constraints for fluid generation and for permeability increase related to mineral reactions and phase transitions suggest that the marbles acquired their anomalous Sr-isotopic composition during subduction below 60 km. The marbles with the least radiogenic Sr isotopic composition demonstrate that crustal rocks may lose their isotopic fingerprint during deep subduction.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd
    Terra nova 13 (2001), S. 0 
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The isotopic composition of lead available for incorporation during metamorphic reactions is heterogeneous, depends on the reaction history of the metamorphic rock, and is commonly not accessible for measurement as the precursor minerals have been consumed during the growth of the metamorphic phases. The initial lead composition has a significant effect on the age of low-238U/204Pb metamorphic phases (e.g. garnet, rutile, titanite, staurolite, vesuvianite and ilmenite). Using a distinct value (e.g. leached K-feldspar Pb, model Pb) rather than a geologically reasonably constrained range may result in apparently precise, yet inaccurate ages. Since age data from metamorphic minerals are widely used to unravel the P–T–t–d evolution of orogens, inaccurate ages result in: (1) incorrect timing (duration) of P–T loops and associated with it the heat budget and mass transfer in orogens; (2) arbitrary rates (based on the age difference between core and rim) for mineral growth, P–T evolution and deformation; and (3) apparent sequences of isotopic closure for the U–Pb system of contrasting minerals.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    International journal of earth sciences 79 (1990), S. 693-707 
    ISSN: 1437-3262
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Abstract The imbrication of the Proterozoic basement during the Caledonian orogeny was associated with fluid flow, which caused locally low-grade retrograde metamorphism of the basement, and which introduced externally derived radiogenic lead (206Pb/204Pb 〉 20.0) into permeable zones. This radiogenic lead was leached from the Proterozoic basement. To the east of the present-day Caledonian front, radiogenic lead is a pertinent geochemical tracer of the Caledonian imbrication of the Proterozoic basement, since lithostratigraphic marker beds are absent and the distribution of the retrograde metamorphism also could reflect a Proterozoic event. The distribution of radiogenic sulfide lead compositions suggests a zone of chemical and mechanical reactivation of the Proterozoic basement related to the Caledonian orogeny, that extends ca. 100 km to the east of the present border of the Caledonian nappes. Such radiogenic lead mainly occurs in conjunction with N-S to 20°E striking mylonite zones which often are bound to supracrustal rocks, e.g. such as pelitic schists and mafic vulcanites, while non-radiogenic lead compositions have been observed in mineralizations associated with acid supracrustal rocks and to the east of the imbricated and chemically active zone of the Proterozoic basement, which approximately coincides with the geographic distribution of Bouguer anomaly lows, metamorphic grade, and fault pattern.
    Abstract: Résumé L'imbrication du socle protérozoïque pendant l'orogénése calédonienne a été associée à la circulation de fluides qui ont localement provoqué un métamorphisme rétrograde du socle et qui ont transporté du plomb radiogénique externe (206Pb/204Pb 〉 20.0) dans les zones perméables. Ce plomb radiogénique a été lessivé des roches protérozoïques du socle. A l'est du front actuel des Calédonides, le plomb radiogénique représente un bon indicateur géochimique de l'imbrication calédonienne du socle protérozoïque, parce qu'il n'y a pas d'horizon de repère et que la distribution du métamorphisme rétrograde peut aussi résulter d'un événement protérozoïque. La distribution des compositions isotopiques du plomb radiogénique des sulfures indique une zone de réactivation chimique et mécanique du socle proterozoïque liée à l'orogenèse calédonienne, qui s'étend sur environ 100 km à l'est de la limite actuelle des nappes calédoniennes. Un tel plomb radiogénique se retrouve plus spécialement en relation avec des zones mylonitiques orientées N-S à 20 °E qui sont souvent confinées aux roches supracrustales, tels que des schistes pélitiques et des roches volcaniques acides. Cependant, des compositions isotopiques non radiogéniques de plomb ont été trouvées dans des minerais associés à des roches supracrustales acides, à l'est de la zone du socle protérozoïque imbriqué et activé. Cette zone coïncide approximativement avec la distribution géographique des minima des anomalies de Bouguer, des faciés métamorphiques et du type de failles.
    Notes: Zusammenfassung Die Verschuppung des proterozoischen Grundgebirges während der kaledonischen Gebirgsbildung war von einer Fluidinfiltration begleitet, die lokal eine retrograde Metamorphose des Grundgebirges bewirkte und die externes, radiogenes Blei (206Pb/206Pb 〉 20.0) in permeablen Zonen zuführte. Dieses radiogene Blei ist aus dem proterozoischen Grundgebirge ausgelaugt worden. Im Osten der heutigen Front der Kaledoniden ist das radiogene Blei ein geeigneter geochemischer Indikator der kaledonischen Verschuppung des proterozoischen Grundgebirges, da lithostratigraphische Leithorizonte fehlen und die Verteilung der retrograden Metamorphose auch ein proterozoisches Ereignis widerspiegeln könnte. Die Verteilung der radiogenen Sulfidbleizusammensetzungen deutet eine mit der kaledonischen Orogenese zusammenhängende Zone chemischer und mechanischer Mobilisierung des proterozoischen Grundgebirges an, die sich bis etwa 100 km östlich der heutigen Front der kaledonischen Decken erstreckt. Dieses radiogene Blei tritt hauptsächlich zusammen mit N-S bis 20°E streichenden Mylonitzonen auf, die oft an Suprakrustalgesteine, wie zum Beispiel pelitische Schiefer und mafische Vulkanite, gebunden sind. Im Gegensatz dazu tritt nichtradiogenes Blei hauptsächlich in Vererzungen, die mit sauren Suprakrustalgestemen assoziiert sind, und östlich der verschuppten und chemisch aktivierten Zone auf. Diese Zone fällt ungefähr mit der geographischen Verteilung der Bougueranomalieminima, des Metamorphosegrades und der Verwerfungssysteme zusammen.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Mineralogy and petrology 50 (1994), S. 271-285 
    ISSN: 1438-1168
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Zusammenfassung Proterozoische Sulfidvererzungen im proterozoischen Grundgebirge weisen Bleiisotopenzusammensetzungen auf, die auf eine Mischungslinie im206Pb/204Pb-207Pb/204Pb Diagramm fallen. Die proterozoischen Vererzungen enthalten eine Komponente radiogenen Bleis, welches im Verlaufe der kaledonischen Orogenese aus dem proterozoischen Grundgebirge ausgelaugt wurde. Wenig oder nicht deformierte Abschnitte in den proterozoischen Sulfidvererzungen weisen weniger radiogene Bleiisotopenzusammensetzungen auf, als Bruch- und Scherzonen in denselben Vererzungen. Diese Zonen mit radiogenem, kaledonischem Blei weisen auch höhere Blei-, Zink- und Gold-Gehalte auf als die übrigen Teile der Vererzung, was andeutet, daß diese Metalle zusammen mit dem radiogenen Blei zu einem viel späteren Zeitpunkt in die Vererzung eingebracht worden sind. Die proterozoischen Vererzungen bewirkten die Metallausfällung aus Fluiden, die entlang von kaledonisch mobilisierten Verwerfungen und Scherzonen flossen.
    Notes: Summary Proterozoic sulfide deposits within the basement of northern Sweden have lead isotopic compositions that fall on a mixing line in the206Pb/204Pb-207Pb/204Pb diagram. These deposits contain a highly radiogenic Phanerozoic lead component that was leached from the Proterozoic basement at around 0.4 Ga during the Caledonian orogeny. Within the Proterozoic deposits, the less radiogenic lead isotopic compositions occur in undeformed and little deformed sections, while the more radiogenic lead isotopic compositions are observed along fault, fracture, and shear zones. These zones with radiogenic Phanerozoic lead also have higher contents of lead, zinc, and gold, respectively, than the other parts of the deposits, which suggests that these metals were introduced together with the radiogenic lead at a much later event than the metals in the unaltered Proterozoic deposit. The Proterozoic deposits acted as traps for metal additions along Caledonian reactivated fault and shear zones in the Proterozoic basement.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...