GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Geochimica et cosmochimica acta, New York, NY [u.a.] : Elsevier, 1950, 72(2008), Seite 3067-3090, 0016-7037
    In: volume:72
    In: year:2008
    In: pages:3067-3090
    Description / Table of Contents: Two sediment cores retrieved at the northern slope of Sakhalin Island, Sea of Okhotsk, were analyzed for biogenic opal, organic carbon, carbonate, sulfur, major element concentrations, mineral contents, and dissolved substances including nutrients, sulfate, methane, major cations, humic substances, and total alkalinity. Down-core trends in mineral abundance suggest that plagioclase feldspars and other reactive silicate phases (olivine, pyroxene, volcanic ash) are transformed into smectite in the methanogenic sediment sections. The element ratios Na/Al, Mg/Al, and Ca/Al in the solid phase decrease with sediment depth indicating a loss of mobile cations with depth and producing a significant down-core increase in the chemical index of alteration. Pore waters separated from the sediment cores are highly enriched in dissolved magnesium, total alkalinity, humic substances, and boron. The high contents of dissolved organic carbon in the deeper methanogenic sediment sections (50-150 mg dm-3) may promote the dissolution of silicate phases through complexation of Al3+ and other structure-building cations. A non-steady state transport-reaction model was developed and applied to evaluate the down-core trends observed in the solid and dissolved phases. Dissolved Mg and total alkalinity were used to track the in-situ rates of marine silicate weathering since thermodynamic equilibrium calculations showed that these tracers are not affected by ion exchange processes with sediment surfaces. The modeling showed that silicate weathering is limited to the deeper methanogenic sediment section whereas reverse weathering was the dominant process in the overlying surface sediments. Depth-integrated rates of marine silicate weathering in methanogenic sediments derived from the model (81.4-99.2 mmol CO2 m-2 year-1) are lower than the marine weathering rates calculated from the solid phase data (198-245 mmol CO2 m-2 year-1) suggesting a decrease in marine weathering over time. The production of CO2 through reverse weathering in surface sediments (4.22-15.0 mmol CO2 m-2 year-1) is about one order of magnitude smaller than the weathering-induced CO2 consumption in the underlying sediments. The evaluation of pore water data from other continental margin sites shows that silicate weathering is a common process in methanogenic sediments. The global rate of CO2 consumption through marine silicate weathering estimated here as 5-20 Tmol CO2 year-1 is as high as the global rate of continental silicate weathering.
    Type of Medium: Electronic Resource
    ISSN: 0016-7037
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Spinal cord ; Scratch reflex ; Ventral spino-cerebellar tract ; Spino-reticulo-cerebellar pathway ; Cerebellum ; Cooling the nervous tissue ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary (1) The “fictitious” scratch reflex was evoked in decerebrate curarized cats by pinna stimulation. Activity of neurons of the ventral spinocerebellar tract (VSCT) from the L4 and L5 segments of the spinal cord as well as of neurons of the spinoreticulo-cerebellar pathway (SRCP) from the lateral reticular nucleus of the medulla oblongata was recorded. Cooling and destruction of different parts of the lumbo-sacral enlargement of the spinal cord were performed. (2) Cooling of the L5 or L6 segment abolished the rhythmic activity in the greater part of the spinal hindlimb centre but did not affect the generation of rhythmic oscillations in the remaining (rostral) segments of the lumbo-sacral enlargement. Under these conditions, neither the rhythmic activity of VSCT neurons located rostral to the thermode nor that of SRCP neurons changed. (3) A normal rhythmic activity of SRCP neurons also persisted after destruction of grey matter in the L3 and L4 segments. It can be concluded that activity of these neurons is independent of whichever part of the enlargement generates rhythmic oscillations. (4) From these observations a hypothesis is advanced that the main content of signals conveyed by the VSCT and SRCP to the cerebellum is the information regarding activity of the generator of rhythmic oscillations that is located in the L3-L5 spinal segments.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1106
    Keywords: Pteropodial mollusc ; Locomotion ; Pedal ganglion ; Interneurons ; Efferent neurons
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1.Activity from neurons in isolated pedal ganglia of Clione limacina was recorded intracellularly during generation of rhythmic swimming. To map the distribution of cells in a ganglion, one of two microelectrodes was used to monitor activity of the identified neuron (1A or 2A), while the second electrode was used to penetrate successively all the visible neurons within a definite area of the ganglion. In addition, pairs of neurons of various types were recorded in different combinations with each other. Intracellular staining of neurons was also performed. 2.Each ganglion contained about 400 neurons, of which about 60 neurons exhibited rhythmic activity related to a swim cycle. These rhythmic neurons were divided into 9 groups (types) according to axonal projections, electrical properties and the phase of activity in a swim cycle. Three types of interneurons and six types of efferent neurons were distinguished. 3.Type 7 and 8 interneurons generated only one spike of long (50–150 ms) duration per swim cycle. Type 7 interneurons discharged in the phase of the cycle that corresponded (in actual swimming) to the dorsal movement of wings (D-phase). Type 8 interneurons discharged in the opposite phase corresponding to the ventral movement of wings (V-phase). With excitation of type 7 interneurons, an IPSP appeared in the type 8 interneurons, and vice versa. Neuropilar branching of these neurons was observed in the ipsilateral ganglion. In addition, they sent an axon to the contralateral ganglion across the pedal commissure. 4.Efferent neurons (i.e. the cell sending axons into the wing nerve) generated spikes of 1–5 ms duration. Type 1 and 3 neurons were excited in the D-phase of a swim cycle and were inhibited in the V-phase. Type 2 and 4 neurons were excited in the V-phase and inhibited in the D-phase. Type 10 neurons received only an excitatory input in the V-phase, while type 6 neurons received only an inhibitory input in the D-phase. 5. Type 12 interneurons were non-spiking cells, they generated a stable depolarization (“plateau”) throughout most of the V-phase. 6. Neurons of the same type from one ganglion (except for type 6) were electrically coupled to each other. There were also electrical connections between most neurons firing in the same phase of the cycle, i.e. between types 3 and 7, as well as between types 2, 4 and 8. Type 7 interneurons from the left and right ganglia were electrically coupled, the same was true for type 8 interneurons.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1106
    Keywords: Pteropodial mollusc ; Pedal ganglia ; Locomotion ; Central pattern generator ; Neuron polarization ; Tetrodotoxin ; Cobalt
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Neurons from the isolated pedal ganglia of the marine mollusc Clione limacina were recorded from intracellularly during generation of the locomotory rhythm. Polarization of single type 7 or type 8 interneurons (which discharge in the D-and V-phases of a swim cycle, respectively) strongly affected activity of the rhythm generator. Injection of depolarizing and hyperpolarizing current usually resulted in shortening and lengthening of a swim cycle, respectively. A short pulse of hyperpolarizing current shifted the phase of the rhythmic generator. The same effect could be evoked by polarization of efferent neurons of types 2, 3 and 4 which are electrically coupled to interneurons. On the contrary, polarization of types 1, 6 and 10 efferent neurons, having no electrical connections with interneurons, did not affect the locomotory rhythm. 2. A number of observations indicate that type 7 and 8 interneurons constitute the main source of postsynaptic potentials that were observed in all the “rhythmic” neurons of the pedal ganglia. Type 7 interneurons excited the D-phase neurons and inhibited the V-phase neurons; type 8 interneurons produced opposite effects. 3. Tetrodotoxin eliminated spike generation in all efferent neurons of the pedal ganglia, while in interneurons spike generation persisted. After blocking the spike discharges in all the efferent neurons, type 7 and 8 interneurons were capable of generating alternating activity. One may conclude that these interneurons determine the main features of the swim pattern, i.e., the rhythmic alternating activity of two (D and V) populations of neurons. 4. Both type 7 and type 8 interneurons were capable of endogenous rhythmic discharges with a period like that in normal swimming. This was demonstrated in experiments in which one of the two populations of “rhythmic” neurons (D or V) was inhibited by means of strong electrical hyperpolarization, as well as in experiments in which interaction between the two populations, mediated by chemical synapses, was blocked by Co2+ ions. 5. Type 7 and 8 interneurons were capable of “rebound”, i.e. they had a tendency to discharge after termination of inhibition. 6. V-phase neurons exerted not only inhibitory but also excitatory action upon D-phase neurons, the excitatory action being longer than the inhibitory one. 7. The main experimental findings correspond well to the model of rhythm generator consisting of two half centres possessing endogenous rhythmic activity. The half-centres exert strong, short duration inhibitory and weak long duration excitatory actions upon one another. The behaviour of such a model is considered and compared with that of the locomotor generator of Clione.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1106
    Keywords: “Fictitious” scratch reflex ; Spinal cord ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary (1)Pinna stimulation evoked rhythmic oscillations in the spinal cord of the decerebrate curarized cat (“fictitious” scratch reflex). The role of different spinal segments in generation of these oscillations was studied. For this purpose, destruction of the grey matter of one or of several spinal segments was performed. Besides, different numbers of caudal segments were disconnected from the rest of the cord by cooling the lateral surface of the cord. ENGs of muscle nerves and activity of spinal neurons were recorded. (2) Different parts of the lumbosacral spinal cord, i.e. the L3 and L4 segments disconnected from the caudal part of the cord as well as the isolated L5 segment, are capable of generating rhythmic oscillations with a frequency (3–4 Hz) typical of the scratch reflex. (3) Rhythmic activity of the more caudal segments (L6-S1) usually appears only provided the rostral segments (L3–L5) generate rhythmic oscillations. However, when the dorsal surface of the L6-S1 segments is cooled, pinna stimulation evokes rhythmic activity in these segments earlier than in the L3–L5 segments. (4) The hypothesis is advanced that the L3–L5 segments are the “leading” ones, i.e., they determine the rhythm of activity in the whole spinal hindlimb centre.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 63 (1986), S. 106-112 
    ISSN: 1432-1106
    Keywords: Pteropodial mollusc ; Pedal ganglia ; Locomotion ; Interneurons and efferent neurons ; Endogenous activity ; Isolated cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In the pteropodial mollusc Clione limacina, the rhythmic locomotor wing movements are controlled by the pedal ganglia. The locomotor rhythm is generated by two groups of interneurons (groups 7 and 8) which drive efferent neurons. In the present paper, the activity of isolated neurons, which were extracted from the pedal ganglia by means of an intracellular electrode, is described. The following results have been obtained: 1. Isolated type 7 and 8 interneurons preserved the capability for generation of prolonged (100–200 ms) action potentials. The frequency of these spontaneous discharges was usually within the limit of locomotor frequencies (0.5–5 Hz). By de- or hyperpolarizing a cell, one could usually cover the whole range of locomotor frequencies. This finding demonstrates that the locomotor rhythm is indeed determined by the endogenous rhythmic activity of type 7 and 8 interneurons. 2. Type 1 and 2 efferent neurons, before isolation, could generate single spikes as well as high-frequency bursts of spikes. These two modes of activity were also observed after isolating the cells. Thus, the bursting activity of type 1 and 2 neurons, demonstrated during locomotion, is determined by their own properties. Type 3 and 4 efferent neurons generated only repeated single spikes both before and after isolation. 3. The activity of the isolated axons of type 1 and 2 neurons did not differ meaningfully from the activity of the whole cells. Furthermore, in the isolated pedal commissure, we found units whose activity (rhythmically repeating prolonged action potentials) resembled the activity of type 7 and 8 interneurons. These units seemed to be the axons of type 7 and 8 interneurons. Thus, different parts of the cell membrane (soma and axons) have similar electric properties.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1106
    Keywords: Pteropodial mollusc ; Pedal ganglia ; Locomotion ; Central pattern generator ; Plateau potentials
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Type 12 interneurons in pedal ganglia of Clione limacina exerted a strong influence upon the locomotor generator during “intense” swimming. These neurons generated “plateau” potentials, i.e. their membrane potential had two stable states: the “upper” one when a neuron was depolarized, and the “down” one, separated by 30–40 mV. The interneurons could remain in each state for a long time. Short depolarizing and hyperpolarizing current pulses, as well as excitatory and inhibitory postsynaptic potentials, could transfer the interneurons from one state to another. 2. When the pedal ganglia generated the locomotory rhythm, type 12 neurons received an EPSP and passed to the “upper” state in the V2-phase of a locomotor cycle. They remained at this state until the beginning of the D1-phase when they received an IPSP and passed to the “down” state. The EPSP in type 12 neurons was produced by type 8d neurons, and the IPSP by type 7 neurons. 3. Type 12 neurons exerted inhibitory influences upon many neurons active in the V1 and V2 phases, and excitatory influences upon the D-phase interneurons (type 7). 4. The functional role of type 12 neurons was to limit the activity of neurons discharging in the V-phase of a locomotory cycle. In addition, they enhanced the excitation of the D-phase neurons and promoted, thus, the transition from the V-phase to the D-phase.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1106
    Keywords: Pteropodial mollusc ; Locomotion ; Pedal ganglion ; Central pattern generator ; Identified neurons ; Serotonin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1.The marine mollusc Clione limacina swims by making rhythmic movements (with a frequency of 1–5 Hz) of its two wings. Filming demonstrated that the wings perform oscillatory movements in the frontal plane of the animal. During both the upward and downward movements of the wing, its posterior edge lagged behind the anterior one, i.e. the wing plane was inclined in relation to the longitudinal axis of an animal. As a result of this inclination, the wing oscillations in the frontal plane produce a force directed forwards. 2.In restrained animals with the body cavity opened (a whole-animal preparation), the wing position, electrical activity in the wing nerve and activity of two identified efferent neurons (1A and 2A) were recorded during locomotory wing movements. There were two bursts of activity in the wing nerve during the locomotory cycle, the first one corresponding to the excitation of efferent neurons controlling the wing elevation, and the second one, to the excitation of efferent neurons controlling the lowering of the wing. Neurons 1A and 2A fired reciprocally at the beginning of the phase of elevating and lowering the wing, respectively. During excitation of one of the neurons, an IPSP appeared in its antagonist. 3. A pair of isolated pedal ganglia of Clione was capable of generating the locomotory rhythm (“fictitious swimming”). In fictitious swimming, as in actual swimming, there were two bursts of activity in the wing nerve per locomotory cycle, and the 1A and 2A neurons fired reciprocally. Homologous neurons from the left and right ganglia fired inphase. A single pedal ganglion was also capable of generating the locomotory rhythm. 4.Serotonin (10-5–10-6 M) increased the locomotor activity both in the whole-animal preparation and in the isolated pedal ganglia.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-8221
    Keywords: human insulin gene ; polymerase chain reaction ; subcloning of the insulin gene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract A method for cloning the insulin gene from total human DNA is developed on the basis of the polymerase chain reaction. Cloning of the insulin gene from the total DNA of human lymphocytes is performed to obtain a pNP-90 vector for subsequent expression of the insulin gene in nonendocrine cells for the purposes of gene therapy of diabetic angiopathies.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-8205
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...