GLORIA

GEOMAR Library Ocean Research Information Access

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Submarine geology ; Landslides ; Mass-wasting ; Landslides ; Mass-wasting ; Submarine geology ; Aufsatzsammlung ; Meeresboden ; Suspensionsströmung ; Submarine Gleitung ; Turbidit ; Rutschung ; Aufsatzsammlung ; Meeresgeologie ; Massenbewegung ; Tsunami ; Turbiditätsströmung ; Konturit ; Flysch
    Description / Table of Contents: [I].Introduction:Advancing from subaqueous mass movement case studies to providing advice and mitigation /D. Gwyn Lintern, David C. Mosher and Martin Scherwath.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (vii, 609 Seiten) , Illustrationen, Karten
    Series Statement: Geological Society, London, special publications no. 477
    DDC: 551.307
    Language: English
    Note: Includes bibliographical references
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Geophysical journal international, Oxford : Oxford Univ. Press, 1958, (2008), 1365-246X
    In: year:2008
    In: extent:15
    Type of Medium: Online Resource
    Pages: 15
    ISSN: 1365-246X
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Römer, Miriam; Riedel, Michael; Scherwath, Martin; Heesemann, Martin; Spence, George D (2016): Tidally controlled gas bubble emissions: A comprehensive study using long-term monitoring data from the NEPTUNE cabled observatory offshore Vancouver Island. Geochemistry, Geophysics, Geosystems, 17(9), 3797-3814, https://doi.org/10.1002/2016GC006528
    Publication Date: 2023-11-25
    Description: Long-term monitoring over 1 year revealed high temporal variability of gas emissions at a cold seep in 1250 m water depth offshore Vancouver Island, British Columbia. Data from the North East Pacific Time series Underwater Networked Experiment observatory operated by Ocean Networks Canada were used. The site is equipped with a 260 kHz Imagenex sonar collecting hourly data, conductivity-temperature-depth sensors, bottom pressure recorders, current meter, and an ocean bottom seismograph. This enables correlation of the data and analyzing trigger mechanisms and regulating criteria of gas discharge activity. Three periods of gas emission activity were observed: (a) short activity phases of few hours lasting several months, (b) alternating activity and inactivity of up to several day-long phases each, and (c) a period of several weeks of permanent activity. These periods can neither be explained by oceanographic conditions nor initiated by earthquakes. However, we found a clear correlation of gas emission with bottom pressure changes controlled by tides. Gas bubbles start emanating during decreasing tidal pressure. Tidally induced pressure changes also influence the subbottom fluid system by shifting the methane solubility resulting in exsolution of gas during falling tides. These pressure changes affect the equilibrium of forces allowing free gas in sediments to emanate into the water column at decreased hydrostatic load. We propose a model for the fluid system at the seep, fueled by a constant subsurface methane flux and a frequent tidally controlled discharge of gas bubbles into the ocean, transferable to other gas emission sites in the world's oceans.
    Keywords: Azimuth; Center for Marine Environmental Sciences; CT; DATE/TIME; Distance; LATITUDE; LONGITUDE; Magnitude; MARUM; NEPTUNE; off west coast of Vancouver Island, British Columbia; Time delay; Underway cruise track measurements
    Type: Dataset
    Format: text/tab-separated-values, 1075 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-12-14
    Description: Extreme events have long been underestimated in the extent to which they shape the surface of our planet, our environment, its ecological integrity, and the sustainability of human society. Extreme events are by definition rarely observed, of significant impact and, as a result of their spatiotemporal range, not always easily predicted. Extremes may be short-term catastrophic events such as tsunamis, or long-term evolving events such as those linked to climate change; both modify the environment, producing irreversible changes or regime shifts. Whatever the driver that triggers the extreme event, the damages are often due to a combination of several processes and their impacts can affect large areas with secondary events (domino effect), whose effects in turn may persist well beyond the duration of the trigger event itself. Early studies of extreme events were limited to opportunistic approaches: observations were made within the context of naturally occurring events with high societal impact. Given that climate change is now moving us out of a relatively static climate regime during the development of human civilization, extreme events are now a function of underlying climate shifts overlain by catastrophic processes. Their impacts are often due to synergistic factors, all relevant in understanding process dynamics; therefore, an integrated methodology has become essential to enhance the reliability of new assessments and to develop strategies to mitigate societal impacts. Here we summarize the current state of extreme event monitoring in the marine system, highlighting the advantages of a multidisciplinary approach using Research Infrastructures for providing the temporal and spatial resolution required to monitor Earth processes and enhance assessment of associated impacts.
    Description: Published
    Description: 626668
    Description: 3A. Geofisica marina e osservazioni multiparametriche a fondo mare
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-03-19
    Description: Widespread gas venting along the Cascadia margin is investigated from acoustic water column data and reveals a nonuniform regional distribution of over 1100 mapped acoustic flares. The highest number of flares occurs on the shelf, and the highest flare density is seen around the nutrition-rich outflow of the Juan de Fuca Strait. We determine similar to 430 flow-rates at similar to 340 individual flare locations along the margin with instantaneous in situ values ranging from similar to 6 mL min(-1) to similar to 18 L min(-1). Applying a tidal-modulation model, a depth-dependent methane density, and extrapolating these results across the margin using two normalization techniques yields a combined average in situ flow-rate of similar to 88 x 10(6) kg y(-1). The average methane flux-rate for the Cascadia margin is thus estimated to similar to 0.9 g y(-1) m(-2). Combined uncertainties result in a range of these values between 4.5 and 1800% of the estimated mean values.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: text
    Format: other
    Format: other
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Publication Date: 2018-01-19
    Description: Geophysical investigations of the northern Hikurangi subduction zone northeast of New Zealand, image fore‐arc and surrounding upper lithospheric structures. A seismic velocity (Vp) field is determined from seismic wide‐angle data, and our structural interpretation is supported by multichannel seismic reflection stratigraphy and gravity and magnetic modeling. We found that the subducting Hikurangi Plateau carries about 2 km of sediments above a 2 km mixed layer of volcaniclastics, limestone, and chert. The upper plateau crust is characterized by Vp = 4.9–6.7 km/s overlying the lower crust with Vp 〉 7.1 km/s. Gravity modeling yields a plateau thickness around 10 km. The reactivated Raukumara fore‐arc basin is 〉10 km deep, deposited on 5–10 km thick Australian crust. The fore‐arc mantle of Vp 〉 8 km/s appears unaffected by subduction hydration processes. The East Cape Ridge fore‐arc high is underlain by a 3.5 km deep strongly magnetic (3.3 A/m) high‐velocity zone, interpreted as part of the onshore Matakaoa volcanic allochthon and/or uplifted Raukumara Basin basement of probable oceanic crustal origin. Beneath the trench slope, we interpret low‐seismic‐velocity, high‐attenuation, low‐density fore‐arc material as accreted and recycled, suggesting that underplating and uplift destabilizes East Cape Ridge, triggering two‐sided mass wasting. Mass balance calculations indicate that the proposed accreted and recycled material represents 25–100% of all incoming sediment, and any remainder could be accounted for through erosion of older accreted material into surrounding basins. We suggest that continental mass flux into the mantle at subduction zones may be significantly overestimated because crustal underplating beneath fore‐arc highs have not properly been accounted for.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-10-24
    Description: The dynamically recrystallized grain size is a material parameter associated with dislocation creep of crystalline solids that is especially important as a flow stress indicator via piezometer calibrations. Grain sizes have been measured in many studies of deformed rocks as well as metals and ceramics, but global analyses of the frequency distribution of dynamically recrystallized grain sizes are lacking. Here we present the first systematic investigation of the recrystallized grain size distribution, for quartz. The grain diameters, compiled from 555 samples of 31 studies of quartz mylonites deformed over a wide range of conditions, extend from ∼3 μm to 3 mm, with distinct maxima at 10–20 μm and 70–80 μm, and minima at 35–40 μm and ∼120 μm. The frequency maxima correlate with distinct microstructures and the minima with the transitions between these microstructures, which we interpret to result from the dominance of the recrystallization mechanisms of bulging, subgrain rotation, and grain boundary migration recrystallization. These results demonstrate the necessity of distinct piezometer calibrations for different recrystallization mechanisms and highlight the importance of the recrystallized grain size for theoretical models of dynamic recrystallization.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-04-04
    Description: Three active-source seismic refraction profiles are integrated with morphological and potential field data to place the first regional constraints on the structure of the Kermadec subduction zone. These observations are used to test contrasting tectonic models for an along-strike transition in margin structure previously known as the 32°S boundary. We use residual bathymetry to constrain the geometry of this boundary and propose the name Central Kermadec Discontinuity (CKD). North of the CKD, the buried Tonga Ridge occupies the forearc with VP 6.5–7.3 km s-1 and residual free-air gravity anomalies constrain its latitudinal extent (north of 30.5°S), width (110 ± 20 km) and strike (~005° south of 25°S). South of the CKD the forearc is structurally homogeneous down-dip with VP 5.7–7.3 km s-1. In the Havre Trough backarc, crustal thickness south of the CKD is 8-9 km, which is up-to 4 km thinner than the northern Havre Trough and at least 1 km thinner than the southern Havre Trough. We suggest that the Eocene arc did not extend along the current length of the Tonga-Kermadec trench. The Eocene arc was originally connected to the Three Kings Ridge and the CKD was likely formed during separation and easterly translation of an Eocene arc substrate during the early Oligocene. We suggest that the first-order crustal thickness variations along the Kermadec arc were inherited from before the Neogene and reflect Mesozoic crustal structure, the Cenozoic evolution of the Tonga-Kermadec-Hikurangi margin and along-strike variations in the duration of arc volcanism.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-02-01
    Description: Long-term monitoring over one year revealed high temporal variability of gas emissions at a cold seep in 1250 m water depth offshore Vancouver Island, British Columbia. Data from the North East Pacific Time series Underwater Networked Experiment observatory operated by Ocean Networks Canada were used. The site is equipped with a 260 kHz Imagenex sonar collecting hourly data, conductivity-temperature-depth sensors, bottom pressure recorders, current meter, and an ocean bottom seismograph. This enables correlation of the data and analyzing trigger mechanisms and regulating criteria of gas discharge activity. Three periods of gas emission activity were observed: (a) short activity phases of few hours lasting several months, (b) alternating activity and inactivity of up to several day-long phases each, and (c) a period of several weeks of permanent activity. These periods can neither be explained by oceanographic conditions nor initiated by earthquakes. However, we found a clear correlation of gas emission with bottom pressure changes controlled by tides. Gas bubbles start emanating during decreasing tidal pressure. Tidally induced pressure changes also influence the subbottom fluid system by shifting the methane solubility resulting in exsolution of gas during falling tides. These pressure changes affect the equilibrium of forces allowing free gas in sediments to emanate into the water column at decreased hydrostatic load. We propose a model for the fluid system at the seep, fueled by a constant sub-surface methane flux and a frequent tidally controlled discharge of gas bubbles into the ocean, transferable to other gas emission sites in the world's oceans.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...