GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Marine and petroleum geology, Amsterdam [u.a.] : Elsevier Science, 1984, 28(2011), Seite 1915-1931, 0264-8172
    In: volume:28
    In: year:2011
    In: pages:1915-1931
    Description / Table of Contents: Highly concentrated gas hydrate deposits are likely to be associated with geological features that promote increased fluid flux through the gas hydrate stability zone (GHSZ). We conduct conventional seismic processing techniques and full-waveform inversion methods on a multi-channel seismic line that was acquired over a 125 km transect of the southern Hikurangi Margin off the eastern coast of New Zealand’s North Island. Initial processing, employed with an emphasis on preservation of true amplitude information, was used to identify three sites where structures and stratal fabrics likely encourage focused fluid flow into and through the GHSZ. At two of the sites, Western Porangahau Trough and Eastern Porangahau Ridge, sub-vertical blanking zones occur in regions of intensely deformed sedimentary layering. It is interpreted that increased fluid flow occurs in these regions and that fluids may dissipate upwards and away from the deformed zone along layers that trend towards the seafloor. At Eastern Porangahau Ridge we also observe a coherent bottom simulating reflection (BSR) that increases markedly in intensity with proximity to the centre of the anticlinal ridge. 1D full-waveform inversions conducted at eight points along the BSR reveal much more pronounced low-velocity zones near the centre of the ridge, indicating a local increase in the flux of gas-charged fluids into the anticline. At another anticline, Western Porangahau Ridge, a dipping high-amplitude feature extends from the BSR upwards towards the seafloor within the regional GHSZ. 1D full-waveform inversions at this site reveal that the dipping feature is characterised by a high-velocity zone overlying a low-velocity zone, which we interpret as gas hydrates overlying free gas. These results support a previous interpretation that this high-amplitude feature represents a local “up-warping” of the base of hydrate stability in response to advective heat flow from upward migrating fluids. These three sites provide examples of geological frameworks that encourage prolific localised fluid flow into the hydrate system where it is likely that gas-charged fluids are converting to highly concentrated hydrate deposits
    Type of Medium: Electronic Resource
    ISSN: 0264-8172
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-10-16
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-01-19
    Description: Geophysical investigations of the northern Hikurangi subduction zone northeast of New Zealand, image fore‐arc and surrounding upper lithospheric structures. A seismic velocity (Vp) field is determined from seismic wide‐angle data, and our structural interpretation is supported by multichannel seismic reflection stratigraphy and gravity and magnetic modeling. We found that the subducting Hikurangi Plateau carries about 2 km of sediments above a 2 km mixed layer of volcaniclastics, limestone, and chert. The upper plateau crust is characterized by Vp = 4.9–6.7 km/s overlying the lower crust with Vp 〉 7.1 km/s. Gravity modeling yields a plateau thickness around 10 km. The reactivated Raukumara fore‐arc basin is 〉10 km deep, deposited on 5–10 km thick Australian crust. The fore‐arc mantle of Vp 〉 8 km/s appears unaffected by subduction hydration processes. The East Cape Ridge fore‐arc high is underlain by a 3.5 km deep strongly magnetic (3.3 A/m) high‐velocity zone, interpreted as part of the onshore Matakaoa volcanic allochthon and/or uplifted Raukumara Basin basement of probable oceanic crustal origin. Beneath the trench slope, we interpret low‐seismic‐velocity, high‐attenuation, low‐density fore‐arc material as accreted and recycled, suggesting that underplating and uplift destabilizes East Cape Ridge, triggering two‐sided mass wasting. Mass balance calculations indicate that the proposed accreted and recycled material represents 25–100% of all incoming sediment, and any remainder could be accounted for through erosion of older accreted material into surrounding basins. We suggest that continental mass flux into the mantle at subduction zones may be significantly overestimated because crustal underplating beneath fore‐arc highs have not properly been accounted for.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-11-05
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Touch Oil and Gas
    In:  Exploration & Production - Oil and Gas Review, 8 (2).
    Publication Date: 2017-01-04
    Description: Rock Garden is a broad ridge system that sits atop the deforming accretionary wedge of the convergent Hikurangi Margin, where the Pacific Plate (on the east) is being subducted beneath the Australian Plate (on the west) (see Figure 1A). It is inferred that Rock Garden’s origin is owed to subduction of a seamount, where the topographic high on the down-going plate has caused localised uplift and flexural doming of the seafloor.1–3 Active deformation of the ridge is therefore likely to be extensional in nature, in response to the uplift and doming – an atypical deformation style for the regionally compressional tectonics of the subduction margin. The geology of the ridge is not well constrained, but dredge samples indicate that the ‘country rock’ probably consists of relatively well consolidated mudrocks with low primary porosity.4,5 Gas hydrates are inferred to be widespread beneath much of the Rock Garden ridge. This is based on the observation of numerous bottom simulating reflections (BSRs) in several seismic data sets.1,6,7 BSRs in gas hydrate provinces are usually attributed to gas hydrate overlying free gas.8 Therefore, such BSRs are seismic manifestations of the base of gas hydrate stability (BGHS), above which conditions are generally suited for gas hydrate formation and below which they are not. The region between the seafloor and the BGHS, which are sub-parallel to each other, is defined as the gas hydrate stability zone (GHSZ). The ridge has been a focus site for gas- and gas hydrate-related research since 1996, when Lewis and Marshall first documented methane seepage through the seafloor into the water column.9 In 2004, seismic images of BSRs and gas pockets beneath the ridge were presented and a link was made between sub-seafloor gas distribution and seafloor seepage.1 More recently, greater data coverage revealed gas migration pathways beneath several seep sites, requiring the migration of gas through the GHSZ.7 In addition to studies of gas seepage, a regional erosion mechanism associated with dynamics of the gas hydrate system has been hypothesised to explain the remarkably flat ridge-top profile that stands out amid the surrounding bathymetry of the subduction wedge (see Figure 1B).3,5,6,10 High-resolution seismic data sets have formed the basis for much of the research into Rock Garden’s gas hydrate system. The purpose of this article is to highlight some areas where focused flow of gas-charged fluids into the GHSZ is expected – a process that can benefit from, for example, localised structural deformation11 and relatively permeable sedimentary layering.12,13 From the perspective of gas hydrates as a potential alternative energy resource, these geological relationships are important because the enhanced fluid flow may lead to highly concentrated deposits as gas converts to hydrate.11,13 Recent three-phase modelling also predicts that high concentrations of hydrate are likely to form around regions of gas penetration through the GHSZ.14 Hence, we are mapping potential locations of highly concentrated gas hydrate.
    Type: Article , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-02-23
    Description: The central part of the 2500-km long Tonga-Kermadec Trench is characterized by the subduction of the Louisville Ridge and unusually large seismicity approximately 200-300 km to the south of this ridge subduction. From this region we show preliminary results which have been derived from the recently acquired interpretation of seismic wide-angle reflection/refraction data. The data were collected along an almost 500-km long transect carried out in April 2007 using the R/V Sonne in order to determine the upper lithospheric structures of the incoming Pacific Plate and the overriding Australian Plate across the Colville and Kermadec Ridges. This transect lies immediately north of Raoul Island, the largest of the Kermadec Islands and which is presently a highly active volcano. This study is part of the MANGO project (Marine Geoscientific Inverstigations on the Input and Output of the Kermadec Subduction Zone) which comprises a 1000-km long working area north of New Zealand's North Island. It covers the transition from subduction of the Hikurangi Plateau in the south to erosive subduction of normal Pacific oceanic crust in the centre and thence accretionary subduction further north. Overall the subduction is accompanied by northward increasing seismicity. The aim of this project is to understand the transition throughout the different regimes, the variation of the structures to explain the accompanying seismicty, and the role and evolution of the stratovolcanoes. This will be achieved by analysing the structures of the sediment, crust and upper mantle and also material transfers from its input and output through subduction zone processes.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-08
    Description: Highlights • Seismic depth imaging gives insight into the southern Hikurangi subduction zone. • Velocities reveal regional variations in compaction and drainage of input sediments. • Dewatering of subducted sediments might influence décollement strength. • Thrusts at the leading edge of deformation are upper-plate dewatering pathways. • Stratigraphic host of the décollement changes at the southern end of the margin. Abstract The southern end of New Zealand's Hikurangi subduction margin accommodates highly oblique convergence between the Pacific and Australian plates. We carry out two-dimensional (2D) seismic reflection tomography and pre-stack depth migrations on two seismic lines to gain insight into the nature of subducted sediments and upper plate faulting and dewatering at the toe of the wedge. We also investigate the NE to SW evolution of emergent upper plate thrust faulting using 47 seismic lines spanning an along-strike distance of ∼270 km. The upper sequence of sediments that ultimately gets subducted (the MES sequence) has an anomalously-low seismic velocity character. At the southwestern end of the margin, ∼150 km east of Kaikōura, the MES sequence has experienced greater compaction (for an equivalent effective vertical stress) than it has some 200 km further to the northeast. This difference is likely attributable to greater horizontal compression in the southwest caused by impingement of the Chatham Rise on the deformation front. Relationships between velocity and effective vertical stress suggest that the MES sequence is well-drained in the vicinity of frontal thrusts, corroborated by evidence for upper plate dewatering along those thrusts. Effective drainage of the MES sequence likely promotes interplate coupling on the southern Hikurangi margin. The décollement is generally hosted near a seismic reflector known as “Reflector 7”. East of Kaikōura, however, Reflector 7 becomes accreted, indicating that subduction slip at the southwestern end of the margin is no longer hosted at (or above) this reflector. Instead, the décollement steps down to a deeper stratigraphic level further inboard. Further to the SW, approximately in line with the lower Kaikōura Canyon, the offshore manifestation of subduction-driven compression ceases.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...