GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Language
Years
1
In: Geophysical journal international, Oxford : Oxford Univ. Press, 1958, 178(2009), 2, Seite 742-752, 1365-246X
In: volume:178
In: year:2009
In: number:2
In: pages:742-752
Type of Medium: Online Resource
Pages: graph. Darst
ISSN: 1365-246X
Language: English
Location Call Number Limitation Availability
BibTip Others were also interested in ...
Associated Volumes
  • 2
    In: Geophysical journal international, Oxford : Oxford Univ. Press, 1958, 178(2009), 2, Seite 1112-1131, 1365-246X
    In: volume:178
    In: year:2009
    In: number:2
    In: pages:1112-1131
    Type of Medium: Online Resource
    Pages: graph. Darst
    ISSN: 1365-246X
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Geophysical journal international, Oxford : Oxford Univ. Press, 1958, 179(2009), 1, Seite 579-600, 1365-246X
    In: volume:179
    In: year:2009
    In: number:1
    In: pages:579-600
    Type of Medium: Online Resource
    Pages: graph. Darst
    ISSN: 1365-246X
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Geophysical journal international, Oxford : Oxford Univ. Press, 1958, (2008), 1365-246X
    In: year:2008
    In: extent:15
    Type of Medium: Online Resource
    Pages: 15
    ISSN: 1365-246X
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Geophysical journal international, Oxford : Oxford Univ. Press, 1958, 179(2009), 3, Seite 1265-1278, 1365-246X
    In: volume:179
    In: year:2009
    In: number:3
    In: pages:1265-1278
    Description / Table of Contents: The 1992 Nicaragua earthquake was a 'tsunami earthquake', which generated tsunamis disproportionately large for its surface wave magnitude Ms= 7.2 . Seismological studies and tsunami simulation indicated that the event was a slow earthquake, which occurred on the plate boundary between the subducting Cocos plate and the overriding Caribbean plate. We present a finite element model that enables us to estimate for the first time the temperature and inferred frictional conditions in the rupture area of a tsunami earthquake. Direct and indirect observations are used to constrain all model parameters, and surface heat-flux measurements provide independent information to verify the model results. Furthermore, we used a genetic algorithm to perform a sensitivity analysis of all model parameters and to define the spatial range of thermally defined updip limit of the seismogenic zone. The earthquake nucleated in the seismogenic zone at temperatures of ~150 °C and propagated updip towards the trench axis. The centroid or centre of mass of moment release was located in a region characterized by temperatures of ~50 °C. Thus, the rupture propagated through a region where plate motion is normally accommodated by aseismic creep. Our observations support a model in which tsunami earthquakes nucleate in the seismogenic zone near its updip limit. However, in such an environment coupled asperities are perhaps too small to cause large earthquakes. Seamounts, however, are abundant on the incoming Cocos plate. Therefore, in addition to temperature-dependent metamorphic induration of sediments, increased normal stress by seamount subduction may contribute to accumulate stress sufficiently large to release enough energy near the updip limit of the seismogenic zone to promote dynamic slip along a normally aseismic décollement all way to the ocean.
    Type of Medium: Online Resource
    Pages: graph. Darst
    ISSN: 1365-246X
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Geophysical journal international, Oxford : Oxford Univ. Press, 1958, 159(2004), 2, Seite 749-764, 1365-246X
    In: volume:159
    In: year:2004
    In: number:2
    In: pages:749-764
    Description / Table of Contents: Active seismic investigations along the Pacific margin off Peru were carried out using ocean bottom hydrophones and seismometers. The structure and the P-wave velocities of the obliquely subducting oceanic Nazca Plate and overriding South American Plate from 8°S to 15°S were determined by modelling the wide-angle seismic data combined with the analysis of reflection seismic data. Three detailed cross-sections of the subduction zone of the Peruvian margin and one strike-line across the Lima Basin are presented here. The oceanic crust of the Nazca Plate, with a thin pelagic sediment cover, ranging from 0-200 m, has an average thickness of 6.4 km. At 8°S it thins to 4 km in the area of Trujillo Trough, a graben-like structure. Across the margin, the plate boundary can be traced to 25 km depth. As inferred from the velocity models, a frontal prism exists adjacent to the trench axis and is associated with the steep lower slope. Terrigeneous sediments are proposed to be transported downslope due to gravitational forces and comprise the frontal prism, characterized by low seismic P-wave velocities. The lower slope material accretes against a backstop structure, which is defined by higher seismic P-wave velocities, 3.5-6.0 km s-1. The large variations in surface slope along one transect may reflect basal removal of upper plate material, thus steepening the slope surface. Subduction processes along the Peruvian margin are dominated by tectonic erosion indicated by the large margin taper, the shape and bending of the subducting slab, laterally varying slope angles and the material properties of the overriding continental plate. The erosional mechanisms, frontal and basal erosion, result in the steepening of the slope and consequent slope failure.
    Type of Medium: Online Resource
    Pages: graph. Darst
    ISSN: 1365-246X
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Geophysical journal international, Oxford : Oxford Univ. Press, 1958, 179(2009), 2, Seite 827-849, 1365-246X
    In: volume:179
    In: year:2009
    In: number:2
    In: pages:827-849
    Description / Table of Contents: The Central Costa Rican Pacific margin is characterized by a high-seismicity rate, coincident with the subduction of rough-relief ocean floor and has generated earthquakes with magnitude up to seven in the past. We inverted selected P-wave traveltimes from earthquakes recorded by a combined on- and offshore seismological array deployed during 6 months in the area, simultaneously determining hypocentres and the 3-D tomographic velocity structure on the shallow part of the subduction zone (〈70 km). The results reflect the complexity associated to subduction of ocean-floor morphology and the transition from normal to thickened subducting oceanic crust. The subducting slab is imaged as a high-velocity perturbation with a band of low velocities (LVB) on top encompassing the intraslab seismicity deeper than ~30 km. The LVB is locally thickened by the presence of at least two subducted seamounts beneath the margin wedge. There is a general eastward widening of the LVB over a relatively short distance, closely coinciding with the onset of an inverted forearc basin onshore and the appearance of an aseismic low-velocity anomaly beneath the inner forearc. The latter coincides spatially with an area of the subaerial forearc where differential uplift of blocks has been described, suggesting tectonic underplating of eroded material against the base of the upper plate crust. Alternatively, the low velocities could be induced by an accumulation of upward migrating fluids. Other observed velocity perturbations are attributed to several processes taking place at different depths, such as slab hydration through outer rise faulting, tectonic erosion and slab dehydration.
    Type of Medium: Online Resource
    Pages: graph. Darst
    ISSN: 1365-246X
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Geophysical journal international, Oxford : Oxford Univ. Press, 1958, 180(2010), 3, Seite 1253-1264, 1365-246X
    In: volume:180
    In: year:2010
    In: number:3
    In: pages:1253-1264
    Type of Medium: Online Resource
    Pages: graph. Darst
    ISSN: 1365-246X
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...