GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 21
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 11 (8). Q08S26.
    Publication Date: 2019-09-23
    Description: An array of broadband seismometers transecting the Talamanca Range in southern Costa Rica was operated from 2005 until 2007. In combination with data from a short‐period network near Quepos in central Costa Rica, this data is analyzed by the receiver function method to image the crustal structure in south‐central Costa Rica. Two strong positive signals are seen in the migrated images, interpreted as the Moho (at around 35 km depth) and an intra‐crustal discontinuity (15 km depth). A relatively flat crustal and Moho interface underneath the north‐east flank of the Talamanca Range can be followed for a lateral distance of about 50 km parallel to the trench, with only slight changes in the overall geometry. Closer to the coast, the topography of the discontinuities shows several features, most notably a deeper Moho underneath the Talamanca Mountain Range and volcanic arc. Under the highest part of the mountain ranges, the Moho reaches a depth of about 50 km, which indicates that the mountain ranges are approximately isostatically compensated. Local deviations from the crustal thickness expected for isostatic equilibrium occur under the active volcanic arc and in south Costa Rica. In the transition region between the active volcanic arc and the Talamanca Range, both the Moho and intracrustal discontinuity appear distorted, possibly related to the southern edge of the active volcanic zone and deformation within the southern part of the Central Costa Rica Deformed Belt. Near the volcanoes Irazu and Turrialba, a shallow converter occurs, correlating with a low‐velocity, low‐density body seen in tomography and gravimetry. Applying a grid search for the crustal interface depth and vp/vs ratio cannot constrain vp/vs values well, but points to generally low values (〈1.7) in the upper crust. This is consistent with quartz‐rich rocks forming the mountain range.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-03-01
    Description: Hydrothermal circulation and brittle faulting processes affecting the oceanic lithosphere are usually confined to the upper crust for oceanic lithosphere created at intermediate to fast spreading rates. Lower crust and mantle rocks are therefore relatively dry and undeformed. However, recent studies at subduction zones suggest that hydration of the oceanic plate is most vigorous at the trench–outer rise, where extensional bending-related faulting affects the hydrogeology of the oceanic crust and mantle. To understand the degree of hydration, we studied the seismic velocity structure of the incoming Nazca plate offshore of southern central Chile (∼43°S); here the deep-sea trench is heavily filled with up to 2 km of sediments. Seismic refraction and wide-angle data, complemented by seismic reflection imaging of sediments, are used to derive a two-dimensional velocity model using joint refraction and reflection traveltime tomography. The seismic profile runs perpendicular to the spreading ridge and trench axes. The velocity model derived from the tomography inversion consists of a ∼5.3-km-thick oceanic crust and shows P wave velocities typical for mature fast spreading crust in the seaward section of the profile, with uppermost mantle velocities as fast as ∼8.3 km/s. Approaching the Chile trench, seismic velocities are significantly reduced, however, suggesting that the structures of both the oceanic crust and uppermost mantle have been altered, possibly due to a certain degree of fracturing and hydration. The decrease of the velocities roughly starts at the outer rise, ∼120 km from the deformation front, and continues into the trench. Even though the trench is filled with sediment, basement outcrops in the outer rise frequently pierce the sedimentary blanket. Anomalously low heat flow values near outcropping basement highs indicate an efficient inflow of cold seawater into the oceanic crust. Hydration and crustal cracks activated by extensional bending-related faulting are suggested to govern the reduced velocities in the vicinity of the trench. Considering typical flow distances of 50 km, water might be redistributed over most of the trench–outer rise area. Where trapped in faults, seawater may migrate down to mantle depth, causing up to ∼9% of serpentinization in at least the uppermost ∼2 km of the mantle between the outer rise and the trench axis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Solid Earth, 108 (B10). p. 2491.
    Publication Date: 2018-05-30
    Description: The shallow seismogenic portion of subduction zones generates damaging large and great earthquakes. This study provides structural constraints on the seismogenic zone of the Middle America Trench offshore central Costa Rica and insights into the physical and mechanical characteristics controlling seismogenesis. We have located ~300 events that occurred following the MW 6.9, 20 August 1999, Quepos, Costa Rica, underthrusting earthquake using a three-dimensional velocity model and arrival time data recorded by a temporary local network of land and ocean bottom seismometers. We use aftershock locations to define the geometry and characteristics of the seismogenic zone in this region. These events define a plane dipping at 19° that marks the interface between the Cocos Plate and the Panama Block. The majority of aftershocks occur below 10 km and above 30 km depth below sea level, corresponding to 30–35 km and 95 km from the trench axis, respectively. Relative event relocation produces a seismicity pattern similar to that obtained using absolute locations, increasing confidence in the geometry of the seismogenic zone. The aftershock locations spatially correlate with the downdip extension of the oceanic Quepos Plateau and reflect the structure of the main shock rupture asperity. This strengthens an earlier argument that the 1999 Quepos earthquake ruptured specific bathymetric highs on the downgoing plate. We believe that subduction of this highly disrupted seafloor has established a set of conditions which presently limit the seismogenic zone to be between 10 and 35 km below sea level.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-10-12
    Description: The eastern Sunda arc represents one of the few regions globally where the early stages of continent-arc collision can be studied. We studied along the western limit of the collision zone at the Sunda-Banda arc transition, where the Australian margin collides with the Banda island arc, causing widespread back arc thrusting. We present integrated results of a refraction/wide-angle reflection tomography, gravity modeling, and multichannel reflection seismic imaging using data acquired in 2006 southeast of Sumba Island. The composite structural model reveals the previously unresolved deep geometry of the collision zone. Changes in crustal structure encompass the 10 - 12 km thick Australian basement in the south and the 22 - 24 kmthick Sumba ridge in the north, where backthrusting of the 130 km wide accretionary prism is documented. The structural diversity along this transect could be characteristic of young collisional systems at the transition from oceanic subduction to continent-arc collision. Citation: Shulgin, A., H. Kopp, C. Mueller, E. Lueschen, L. Planert, M. Engels, E. R. Flueh, A. Krabbenhoeft, and Y. Djajadihardja (2009), Sunda-Banda arc transition: Incipient continent-island arc collision (northwest Australia), Geophys. Res. Lett., 36, L10304, doi: 10.1029/2009GL037533.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-04-25
    Description: New seismic and geodetic data from Costa Rica provide insight into seismogenic zone processes in Central America, where the Cocos and Caribbean plates converge. Seismic data are from combined land and ocean bottom deployments in the Nicoya peninsula in northern Costa Rica and near the Osa peninsula in southern Costa Rica. In Nicoya, inversion of GPS data suggests two locked patches centered at 14 ± 2 and 39 ± 6 km depth. Interplate microseismicity is concentrated in the more freely slipping intermediate zone, suggesting that small interseismic earthquakes may not accurately outline the updip limit of the seismogenic zone, the rupture zone for future large earthquakes, at least over the short (∼1 year) observation period. We also estimate northwest motion of a coastal “sliver block” at 8 ± 3 mm/yr, probably related to oblique convergence. In the Osa region to the south, convergence is orthogonal to the trench. Cocos-Caribbean relative motion is partitioned here, with ∼8 cm/yr on the Cocos-Panama block boundary (including a component of permanent shortening across the Fila Costeña fold and thrust belt) and ∼1 cm/yr on the Panama block–Caribbean boundary. The GPS data suggest that the Cocos plate–Panama block boundary is completely locked from ∼10–50 km depth. This large locked zone, as well as associated forearc and back-arc deformation, may be related to subduction of the shallow Cocos Ridge and/or younger lithosphere compared to Nicoya, with consequent higher coupling and compressive stress in the direction of plate convergence.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-05-12
    Description: The O'Higgins Seamount Group is a cluster of volcanic domes located 120 km west of the central Chilean Trench on the crest of the Juan Fernández Ridge. This aseismic hot spot track is subducting under South America triggering a belt of intraslab earthquake hypocenters extending about 700 km inland. The Juan Fernández Ridge marks the southern boundary of a shallow subduction segment. Subduction of oceanic basement relief has been suggested as a cause for the “flat” slab segments characterizing the Andean trench system. The Juan Fernández Ridge, however, shows only moderate crustal thickening, inadequate to cause significant buoyancy. In 2001, wide-angle seismic data were collected along two perpendicular profiles crossing the O'Higgins Group. We present tomographic images of the volcanic edifices and adjacent outer rise-trench environment, which indicate a magmatic origin of the seamounts dominated by extrusive processes. High-resolution bathymetric data yield a detailed image of a network of syngenetic structures reactivated in the outer rise setting. A pervasive fault pattern restricted to the hot spot modified lithosphere coincides with anomalous low upper mantle velocities gained from a tomographic inversion of seismic mantle phases. Reduced uppermost mantle velocities are solely found underneath the Juan Fernández Ridge and may indicate mineral alterations. Enhanced buoyancy due to crustal and upper mantle hydration may contribute an additional mechanism for shallow subduction, which prevails to the north after the southward migration of the Juan Fernández Ridge.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-03-07
    Description: The Musicians Seamount Province is a group of volcanic elongated ridges (VERs) and single seamounts located north of the Hawaiian Chain. A 327° trending seamount chain defines the western part of the province and has been interpreted as the expression of a Cretaceous hot spot beneath the northward moving Pacific Plate. To the east, elongated E-W striking ridges dominate the morphology. In 1999, wide-angle seismic data were collected across two 400 km long VERs. We present tomographic images of the volcanic edifices, which indicate that crustal thickening occurs in oceanic layer 2 rather than in layer 3. This extrusive style of volcanism appears to strongly contrast with the formation processes of aseismic ridges, where crustal thickening is mostly accommodated by intrusive underplating. High-resolution bathymetry was also collected, which yields a detailed image of the morphology of the VERs. From the occurrence of flat-top guyots and from the unique geomorphologic setting, two independent age constraints for the Pacific crust during the Cretaceous “quiet” zone are obtained, allowing a tectonic reconstruction for the formation of the Musicians VERs. Hot spot-ridge interaction leads to asthenosphere channeling from the plume to the nearby spreading center over a maximum distance of 400 km. The Musicians VERs were formed by mainly extrusive volcanism on top of this melt-generating channel. The proposed formation model may be applicable to a number of observed volcanic ridges in the Pacific, including the Tuamotu Isles, the eastern portion of the Foundation chain, and the western termination of the Salas y Gomez seamount chain.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-03-07
    Description: Two end‐member styles of crustal accretion are observed at two adjacent spreading segments at the Mid‐Atlantic Ridge at 5°S: focused accretion to the segment center with rapid crustal thinning toward the transform in the northern segment and crustal thickening toward the transform at an oceanic core complex in the southern segment. Our results were obtained by tomographic inversion of wide‐angle seismic reflection and refraction data collected along three intersecting profiles. The segment north of the 5°S fracture zone is characterized by a well‐developed median valley with a pronounced seafloor bulge in the segment center. A discrete portion of anomalously low velocities (−0.4 to −0.5 km/s relative to average off‐axis structure) at depths of ∼2.5 km beneath this bulge is possibly related to the presence of elevated temperatures and perhaps small portions of partial melt. This suggests that this segment is currently in a magmatically active period, which is confirmed by the observation of fresh lava flows and ongoing high‐temperature hydrothermal activity at the seafloor. Close to the current spreading axis, the crust thins rapidly from 8.5 km beneath the segment center to less than 3 km beneath the transform fault which indicates that melt supply here is strongly focused to the segment center. The reduction in crustal thickness is almost exclusively accommodated by the thinning of velocity portions indicative of seismic layer 3. The transform fault is characterized by more uniform velocity gradients throughout the entire crustal section and very low upper mantle velocities of 7.2–7.3 km/s indicating that serpentinization could be as much as 25% at 3.5 km depth. In contrast, ∼4.1 Ma old crust of the northern segment shows only minor thinning from the segment center toward the segment end. Here, the transform is characterized by a normal seismic layer 2/3 transition suggesting robust melt supply to the segment end at those times. In the adjacent southern segment, the crust thickens from ∼2.5 km beneath the flank of an oceanic core complex to ∼5.0 km at the segment boundary. The observed changes in crustal thickness show a significant temporal and lateral variability in melt supply and suggest a more complex crustal emplacement process than predicted by models of focused melt supply to the segment centers.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: other
    Format: image
    Format: image
    Format: image
    Format: image
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-03-10
    Description: The Cocos and Malpelo Volcanic Ridges are blocks of thickened oceanic crust thought to be the result of the interaction between the Galapagos hot spot and the Cocos‐Nazca Spreading Center during the last 20 m.y. In this work we investigate the seismic structure of these two aseismic ridges along three wide‐angle transects acquired during the Panama basin and Galapagos plume—New Investigations of Intraplate magmatism (PAGANINI)‐1999 experiment. A two‐dimensional velocity field with the Moho geometry is obtained using joint refraction/reflection travel time tomography, and the uncertainty and robustness of the results are estimated by performing a Monte Carlo‐type analysis. Our results show that the maximum crustal thickness along these profiles ranges from ∼16.5 km (southern Cocos) to ∼19 km (northern Cocos and Malpelo). Oceanic layer 2 thickness is quite uniform regardless of total crustal thickness variations; crustal thickening is mainly accommodated by layer 3. These observations are shown to be consistent with gravity data. The variation of layer 3 velocities is similar along all profiles, being lower where crust is thicker. This leads to an overall anticorrelation between crustal thickness and bulk lower crustal velocity. Since this anticorrelation is contrary to crustal thickening resulting from passive upwelling of abnormally hot mantle, it is necessary to consider active upwelling components and/or some compositional heterogeneities in the mantle source. The NW limit of the Malpelo Ridge shows a dramatic crustal thinning and displays high lower crustal velocities and a poorly defined crust‐mantle boundary, suggesting that differential motion along the Coiba transform fault probably separated Regina and Malpelo Ridges.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...