GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Hochschulschrift ; Sundaschelf ; Subduktion
    Type of Medium: Online Resource
    Pages: Online-Ressource
    DDC: 550
    Language: English
    Note: Kiel, Univ., Diss., 2012
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: We present a crustal-scale seismic profile in the Barents Sea based on new data. Wide-angle seismic data were recorded along a 600 km long profile at 38 ocean bottom seismometer and 52 onshore station locations. The modeling uses the joint refraction/reflection tomography approach where co-located multi-channel seismic reflection data constrain the sedimentary structure. Further, forward gravity modeling is based on the seismic model. We also calculate net regional erosion based on the calculated shallow velocity structure. Our model reveals a complex crustal structure of the Baltic Shield to Barents shelf transition zone, as well as strong structural variability on the shelf itself. We document large volumes of pre-Carboniferous sedimentary strata in the transition zone which reach a total thickness of 10 km. A high-velocity crustal domain found below the Varanger Peninsula likely represents an independent crustal block. Large lower crustal bodies with very high velocity and density below the Varanger Peninsula and the Fedynsky High are interpreted as underplated material that may have fed mafic dykes in the Devonian. We speculate that these lower crustal bodies are linked to the Devonian rifting processes in the East European Craton, or belonging to the integral part of the Timanides, as observed onshore in the Pechora Basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Elsevier
    In:  Precambrian Research, 259 . pp. 34-42.
    Publication Date: 2016-11-03
    Description: The southern part of the Baltic Shield hosts a series of mafic dykes and sills of Mesoproterozoic ages, including a ca. 1.53–1.46 Ga sheet-like gabbro-dolerite sills and the Salmi plateau-basalts from the Lake Ladoga region. Based on chiefly geochemical data, the region is conventionally interpreted as an intracratonic Ladoga rift (graben). We question the validity of this geodynamic interpretation by analyzing regional geophysical data (crustal structure, heat flow, Bouguer gravity anomalies, magnetic anomalies, and mantle Vs velocities). We provide a complete list of tectonic, magmatic, and geophysical characteristics typical of continental rifts in general and demonstrate that, except for magmatic and, perhaps, some gravity signature, the Lake Ladoga region lacks any other rift features. We also compare the geophysical data from the Lake Ladoga region with similar in age Midcontinent and Valday rifts, and provide alternative explanations for Mesoproterozoic geodynamic evolution of the southern Baltic Shield. We propose that Mesoproterozoic mafic intrusions in southern Fennoscandia may be associated with a complex deformation pattern during reconfiguration of (a part of) Nuna (Columbia) supercontinent, which led to magma intrusions as a series of mafic dykes along lithosphere weakness zones and ponding of small magma pockets within the cratonic lithosphere. Consequent magma cooling and its partial transition to eclogite facies could have led to the formation of a series of basement depressions, similar to intracratonic basins of North America, while spatially heterogeneous thermo-chemical subsidence, with phase transitions locally speeded by the presence of (subduction-related) fluids, could have produced a series of faults bounding graben-like structures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In:  Polar Science, 9 (1). pp. 107-118.
    Publication Date: 2017-05-01
    Description: Controlled source seismic investigation of crustal structure below ice covers is an emerging technique. We have recently conducted an explosive refraction/wide-angle reflection seismic experiment on the ice cap in east-central Greenland. The data-quality is high for all shot points and a full crustal model can be modelled. A crucial challenge for applying the technique is to control the sources. Here, we present data that describe the efficiency of explosive sources in the ice cover. Analysis of the data shows, that the ice cap traps a significant amount of energy, which is observed as a strong ice wave. The ice cap leads to low transmission of energy into the crust such that charges need be larger than in conventional onshore experiments to obtain reliable seismic signals. The strong reflection coefficient at the base of the ice generates strong multiples which may mask for secondary phases. This effect may be crucial for acquisition of reflection seismic profiles on ice caps. Our experience shows that it is essential to use optimum depth for the charges and to seal the boreholes carefully.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-02-27
    Description: The Sunda‐Banda arc transition at the eastern termination of the Sunda margin (Indonesia) represents a unique natural laboratory to study the effects of lower plate variability on upper plate deformational segmentation. Neighboring margin segments display a high degree of structural diversity of the incoming plate (transition from an oceanic to a continental lower plate, presence/absence of an oceanic plateau, variability of subducting seafloor morphology) as well as a wide range of corresponding fore‐arc structures, including a large sedimentary basin and an accretionary prism/outer arc high of variable size and shape. Here, we present results of a combined analysis of seismic wide‐angle refraction, multichannel streamer and gravity data recorded in two trench normal corridors located offshore the islands of Lombok (116°E) and Sumba (119°E). On the incoming plate, the results reveal a 8.6–9.0 km thick oceanic crust, which is progressively faulted and altered when approaching the trench, where upper mantle velocities are reduced to ∼7.5 km/s. The outer arc high, located between the trench and the fore‐arc basin, is characterized by sedimentary‐type velocities (Vp 〈 5.5 km/s) down to the top of the subducting slab (∼13 km depth). The oceanic slab can be traced over 70–100 km distance beneath the fore arc. A shallow serpentinized mantle wedge at ∼16 km depth offshore Lombok is absent offshore Sumba, where our models reveal the transition to the collisional regime farther to the east and to the Sumba block in the north. Our results allow a detailed view into the complex structure of both the deeper and shallower portions of the eastern Sunda margin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: Forearc structures of the eastern Sunda Arc are studied by new multichannel reflection seismic profiling. We image a high along-strike variability of the subducting oceanic plate, the interface between subducting and overriding plate, the accretionary wedge, the outer arc high and forearc basins. We highlight ongoing tectonic activity of the entire outer arc high: active out-of-sequence thrust faults connecting the plate interface with the seafloor, slope basins showing tilted sedimentary sequences on the outer arc high, vertical displacement of young seafloor sediments, and tilted sedimentary sequences in the Lombok forearc basin. While frontal accretion plays a minor role, the growth of the outer arc high is mainly attributed to oceanic sediments and crustal fragments, which are attached to the base of the upper plate and recycled within the forearc. We image ongoing large-scale duplex formation of the oceanic crust. The incoming oceanic crust is dissected by normal faulting into 5–10 km wide blocks within a 50–70 km wide belt seaward of the deep sea trench. These blocks determine the geometry and evolution of duplexes attached to the base of the overriding plate landward of the trench. Long-lasting and ongoing subsidence of the Lombok Basin is documented by distinct seismic sequences. In the Lombok Basin we image mud diapirs, fed from deeply buried sediments which may have been mobilized by rising fluids. We propose a wrench fault system in the eastern Lombok forearc basin that decouples the subduction regime of the Sunda Arc from the continent–island arc collision regime of the western Banda Arc. The observed tectonic activity of the entire forearc system reflects a high earthquake and tsunami hazard, similar to the western part of the Sunda Arc.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-23
    Description: Subduction zone earthquakes are known to create segmented patches of co-seismic rupture along-strike of a margin. Offshore Sumatra, repeated rupture occurred within segments bounded by permanent barriers, whose origin however is still not fully understood. In this study we image the structural variations across the rupture segment boundary between the Mw 9.1 December 26, 2004 and the Mw 8.6 March 28, 2005 Sumatra earthquakes. A set of collocated reflection and wide-angle seismic profiles are available on both sides of the segment boundary, located offshore Simeulue Island. We present the results of the seismic tomography modeling of wide-angle ocean bottom data, enhanced with MCS data and gravity modeling for the southern 2005 segment of the margin and compare it to the published model for the 2004 northern segment. Our study reveals principal differences in the structure of the subduction system north and south of the segment boundary, attributed to the subduction of 96°E fracture zone. The key differences include a change in the crustal thickness of the oceanic plate, a decrease in the amount of sediment in the trench as well as variations in the morphology and volume of the accretionary prism. These differences suggest that the 96°E fracture zone acts as an efficient barrier in the trench parallel sediment transport, as well as a divider between oceanic crustal blocks of different structure. The variability of seismic behavior is caused by the distinct changes in the morphology of the subduction complex across the boundary related to the difference in the sediment supply.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-07-06
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...