GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-07-16
    Description: The subduction plate interface along the Nicoya Peninsula, Costa Rica, generates damaging large (Mw 〉 7.5) earthquakes. We present hypocenters and 3-D seismic velocity models (VP and VP/VS) calculated using simultaneous inversion of P- and S-wave arrival time data recorded from small magnitude, local earthquakes to elucidate seismogenic zone structure. In this region, interseismic cycle microseismicity does not uniquely define the potential rupture extent of large earthquakes. Plate interface microseismicity extends from 12 to 26 and from 17 to 28 km below sea level beneath the southern and northern Nicoya Peninsula, respectively. Microseismicity offset across the plate suture of East Pacific Rise-derived and Cocos-Nazca Spreading Center-derived oceanic lithosphere is ∼5 km, revising earlier estimates suggesting ∼10 km of offset. Interplate seismicity begins downdip of increased locking along the plate interface imaged using GPS and a region of low VP along the plate interface. The downdip edge of plate interface microseismicity occurs updip of the oceanic slab and continental Moho intersection, possibly due to the onset of ductile behaviour. Slow forearc mantle wedge P-wave velocities suggest 20–30 per cent serpentinization across the Nicoya Peninsula region while calculated VP/VS values suggest 0–10 per cent serpentinization. Interpretation of VP/VS resolution at depth is complicated however due to ray path distribution. We posit that the forearc mantle wedge is regionally serpentinized but may still be able to sustain rupture during the largest seismogenic zone earthquakes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Solid Earth, 108 (B10). p. 2491.
    Publication Date: 2018-05-30
    Description: The shallow seismogenic portion of subduction zones generates damaging large and great earthquakes. This study provides structural constraints on the seismogenic zone of the Middle America Trench offshore central Costa Rica and insights into the physical and mechanical characteristics controlling seismogenesis. We have located ~300 events that occurred following the MW 6.9, 20 August 1999, Quepos, Costa Rica, underthrusting earthquake using a three-dimensional velocity model and arrival time data recorded by a temporary local network of land and ocean bottom seismometers. We use aftershock locations to define the geometry and characteristics of the seismogenic zone in this region. These events define a plane dipping at 19° that marks the interface between the Cocos Plate and the Panama Block. The majority of aftershocks occur below 10 km and above 30 km depth below sea level, corresponding to 30–35 km and 95 km from the trench axis, respectively. Relative event relocation produces a seismicity pattern similar to that obtained using absolute locations, increasing confidence in the geometry of the seismogenic zone. The aftershock locations spatially correlate with the downdip extension of the oceanic Quepos Plateau and reflect the structure of the main shock rupture asperity. This strengthens an earlier argument that the 1999 Quepos earthquake ruptured specific bathymetric highs on the downgoing plate. We believe that subduction of this highly disrupted seafloor has established a set of conditions which presently limit the seismogenic zone to be between 10 and 35 km below sea level.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-05-31
    Description: Subduction of the Cocos plate beneath the Nicoya Peninsula, Costa Rica, generates large underthrusting earthquakes with a recurrence interval of about 50 yrs. The most recent of these events occurred on 5 September 2012 ( M w  7.6). A vigorous sequence of more than 6400 aftershocks was recorded by a local seismic network within the first four months after the mainshock. We determine locations and focal mechanisms for as many aftershocks as possible with M ≥1.5 occurring within the first nine days of the mainshock, all aftershocks with M ≥3 through the end of 2012, and all events with M ≥4 through the end of 2015. We determine faulting geometries using regional full waveform moment tensor (MT) inversion for the largest events ( M ≥4) and P -wave first-motion polarities for smaller events, producing a mechanism catalog with 347 earthquakes. Sixty percent of these events are identified as underthrusting, and their locations are compared with spatial distributions of mainshock slip, afterslip, prior interplate seismicity, and slow-slip phenomena to better understand the mechanical behavior of the plate interface. Most of the aftershocks on the megathrust occur up-dip of the coseismic slip, where afterslip is large, and between coseismic slip and shallow slow-slip patches. The pattern of interplate seismicity during the interseismic period is similar to that for the aftershocks but does not extend to as great a depth. The coseismic slip extends even deeper than the interplate aftershocks, suggesting that the mainshock ruptured a strongly locked patch driving down-dip slip into the conditionally stable part of the deep plate interface that also hosts slow slip. About 80% of the aftershocks have one nodal plane oriented favorably to promote failure from static stress changes following the mainshock and early afterslip, whereas most others occur in regions of large afterslip. Electronic Supplement: Tables of hypocenter location and focal mechanisms and selection criteria for underthrusting events and figures showing the Gutenberg–Richter distribution, regional moment tensor inversion, spatial distribution of earthquake activity, and temporal distribution of underthrusting events.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-01-10
    Description: In subduction zones, elevated pore fluid pressure, generally linked to metamorphic dehydration reactions, has a profound influence on the mechanical behavior of the plate interface and forearc crust through its control on effective stress. We use seismic noise–based monitoring to characterize seismic velocity variations following the 2012 Nicoya Peninsula, Costa Rica earthquake [ M w (moment magnitude) 7.6] that we attribute to the presence of pressurized pore fluids. Our study reveals a strong velocity reduction (~0.6%) in a region where previous work identified high forearc pore fluid pressure. The depth of this velocity reduction is constrained to be below 5 km and therefore not the result of near-surface damage due to strong ground motions; rather, we posit that it is caused by fracturing of the fluid-pressurized weakened crust due to dynamic stresses. Although pressurized fluids have been implicated in causing coseismic velocity reductions beneath the Japanese volcanic arc, this is the first report of a similar phenomenon in a subduction zone setting. It demonstrates the potential to identify pressurized fluids in subduction zones using temporal variations of seismic velocity inferred from ambient seismic noise correlations.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...