GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Global and Planetary Change, ELSEVIER SCIENCE BV, 146, pp. 53-66, ISSN: 0921-8181
    Publication Date: 2016-10-19
    Description: The Northern Bay of Bengal (NBoB) is a globally important region for deep-sea organic matter (OM) deposition due to massive fluvial discharge from the Ganges-Brahmaputra-Meghna (G-B-M) rivers and moderate to high surface productivity. Previous studies have focused on carbon burial in turbiditic sediments of the Bengal Fan. However, little is known about the storage of carbon in pelagic and hemipelagic sediments of the Bay of Bengal over millennial time scales. This study presents a comprehensive history of OM origin and fate as well as a quantification of carbon sediment storage in the Eastern Bengal Slope (EBS) during the last 18 ka. Bulk organic proxies (TOC, TIC, TN, δ13CTOC, δ15NTN) and content and composition of total hydrolysable amino acids (THAA) in a sediment core (SO188-342KL) from the EBS were analyzed. Three periods of high OM accumulation were identified: the Late Glacial (LG), the Bölling/Alleröd (B/A), and the Early Holocene Climatic Optimum (EHCO). Lower eustatic sea level before 15 ka BP allowed a closer connection between the EBS and the fluvial debouch, favoring high terrestrial OM input to the core site. This connection was progressively lost between 15 and 7 ka BP as sea level rose to its present height and terrestrial OM input decreased considerably. Export and preservation of marine OM was stimulated during periods of summer monsoon intensification (B/A and EHCO) as a consequence of higher surface productivity enhanced by cyclonic-eddy nutrient pumping and fluvial nutrient delivery into the photic zone. Changes in the THAA composition indicate that the marine plankton community structure shifted from calcareous-dominated before 13 ka BP to siliceous-dominated afterwards. They also indicate that the relative proportion of marine versus terrestrial OM deposited at site 342KL was primarily driven by relative sea level and enlarged during the Holocene. The ballasting effect of lithogenic particles during periods of high coastal proximity and/or enhanced fluvial discharge promoted the export and preservation of OM. The high organic carbon accumulation rates in the EBS during the LG (18–17 ka BP) were 5-fold higher than at present and comparable to those of glacial upwelling areas. Despite the differences in sediment and OM transport and storage among the Western and Eastern sectors of the NBoB, this region remains important for global carbon sequestration during sea level low-stands. In addition, the summer monsoon was a key promotor of terrestrial and marine OM export to the deep-ocean, highlighting its relevance as regulator of the global carbon budget.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Quaternary Science Reviews, PERGAMON-ELSEVIER SCIENCE LTD, 102, pp. 133-148, ISSN: 0277-3791
    Publication Date: 2016-10-12
    Description: The Indian Summer Monsoon (ISM) is a major global climatic phenomenon. Long-term precipitation proxy records of the ISM, however, are often fragmented and discontinuous, impeding an estimation of the magnitude of precipitation variability from the Last Glacial to the present. To improve our understanding of past ISM variability, we provide a continuous reconstructed record of precipitation and continental vegetation changes from the lower Ganges-Brahmaputra-Meghna catchment and the Indo-Burman ranges over the last 18,000 years (18 ka). The records derive from a marine sediment core from the northern Bay of Bengal (NBoB), and are complemented by numerical model results of spatial moisture transport and precipitation distribution over the Bengal region. The isotopic composition of terrestrial plant waxes (dD and d13C of n-alkanes) are compared to results from an isotope-enabled general atmospheric circulation model (IsoCAM) for selected time slices (pre-industrial, mid-Holocene and Heinrich Stadial 1). Comparison of proxy and model results indicate that past changes in the dD of precipitation and plant waxes were mainly driven by the amount effect, and strongly influenced by ISM rainfall. Maximum precipitation is detected for the Early Holocene Climatic Optimum (EHCO; 10.5 - 6 ka BP), whereas minimum precipitation occurred during the Heinrich Stadial 1 (HS1; 16.9 - 15.4 ka BP). The IsoCAM model results support the hypothesis of a constant moisture source (i.e. the NBoB) throughout the study period. Relative to the pre-industrial period the model reconstructions show 20% more rain during the mid-Holocene (6 ka BP) and 20% less rain during the Heinrich Stadial 1 (HS1), respectively. A shift from C4-plant dominated ecosystems during the glacial to subsequent C3/C4-mixed ones during the interglacial took place. Vegetation changes were predominantly driven by precipitation variability, as evidenced by the significant correlation between the dD and d13C alkane records. When compared to other records across the ISM domain, precipitation and vegetation changes inferred from our records and the numerical model results provide evidence for a coherent regional variability of the ISM from the Last Glacial to the present.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-10-09
    Description: Polar regions are strongly affected by global climate change since warming is projected to be strongest in high latitudes. Understanding temperature changes is crucial to unravel the impact of climate change there. Rising sea surface temperatures (SST) modify oceanographic conditions of the polar and subpolar seas. In the northern hemisphere, increasing mean annual air temperatures (MAAT) lead to thawing of permafrost soils which may initiate release of vast amounts of fossil carbon to the environment. In order to study changes in SST, MAAT and the intensity of carbon export from East Siberia to the adjacent NW Pacific and Bering Sea over the last deglaciation we analyzed terrigenous and marine biomarkers (n-alkanes, branched GDGT & isoprenoid GDGTs) from two sediment cores recovered at the continental margin off Kamchatka peninsula (NW Pacific), and from the western Bering Sea. We test the applicability of TEX86 as a tool for SST-reconstructions over the last deglaciation and thereby produce a TEX86 based SST-record in the Bering Sea. The results are compared to Uk’37 and Mg/Ca based SST. The TEX86 record is interpreted to reflect summer subsurface temperatures. We further investigate the CBT/MBT indices calculated from the branched GDGTs as well as δD of n-alkanes as tools for the reconstruction of MAAT. MAAT based on CBT/MBT shows a pattern similar to Greenland ice core temperature records with cooling events during the Heinrich Event 1 (HE1) and the Younger Dryas (YD). The results for the late Holocene match the modern MAAT of Kamchatka peninsula. However, from the Last Glacial Maximum to the onset of the Bølling/Allerød interstadial (B/A) CBT/MBT produces unrealistic temperatures that are as high as during Holocene. Possibly the record shows summer temperatures during LGM and the early deglaciation and reflects the annual mean at the beginning of the B/A. When interpreting these findings one has to keep in mind that concentrations of branched GDGT are very low (BIT lower than 0.1). Thus it is questionable whether CBT/MBT can be used as temperature proxy since the signal may be affected by in-situ production. In contrast to the CBT/MBT our δD records have hardly no similarity with Greenland ice core data. The B/A does not differ from LGM conditions but there is a slight decrease during YD. While the record of the Bering Sea shows an abrupt increase of 40 ‰ during the early Holocene the NW-Pacific shows a gradual increase of the same magnitude over the whole Holocene period. During the HE1 both records show a sharp increase reaching the Holocene level. This indicates interglacial-like temperatures which is unrealistic for stadial conditions. Coeval changes in the CPI and n-C23/n-C27 indicate that δD is overprinted by a change in the carbon source. Potential explanations include redeposition of material mobilized during deglacial sea-level rise, or release of fossil carbon from permafrost. Terrigenous biomarkers were quantified and used to study the history of carbon export. Accumulation rates of n-alkanes and branched GDGT increase during the YD and are strikingly high during the Preboreal indicating enhanced carbon mobilization. Decomposing permafrost soils in East Siberia and on the Kamchatka peninsula is a likely carbon source.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-11-12
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-05-06
    Description: A potential human footprint on Western Central African rainforests before the Common Era has become the focus of an ongoing controversy. Between 3,000 y ago and 2,000 y ago, regional pollen sequences indicate a replacement of mature rainforests by a forest–savannah mosaic including pioneer trees. Although some studies suggested an anthropogenic influence on this forest fragmentation, current interpretations based on pollen data attribute the ‘‘rainforest crisis’’ to climate change toward a drier, more seasonal climate. A rigorous test of this hypothesis, however, requires climate proxies independent of vegetation changes. Here we resolve this controversy through a continuous 10,500-y record of both vegetation and hydrological changes from Lake Barombi in Southwest Cameroon based on changes in carbon and hydrogen isotope compositions of plant waxes. δ¹³C-inferred vegetation changes confirm a prominent and abrupt appearance of C4 plants in the Lake Barombi catchment, at 2,600 calendar years before AD 1950 (cal y BP), followed by an equally sudden return to rainforest vegetation at 2,020 cal y BP. δD values from the same plant wax compounds, however, show no simultaneous hydrological change. Based on the combination of these data with a comprehensive regional archaeological database we provide evidence that humans triggered the rainforest fragmentation 2,600 y ago. Our findings suggest that technological developments, including agricultural practices and iron metallurgy, possibly related to the large-scale Bantu expansion, significantly impacted the ecosystems before the Common Era.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-09-10
    Description: The temporal succession of changes in Amazonian hydroclimate during Heinrich Stadial 1 (HS1) (ca. 18–14.7 cal ka BP) is currently poorly resolved. Here we present HS1 records based on isotope, inorganic and organic geochemistry from a marine sediment core influenced by the Amazon River discharge. Our records offer a detailed reconstruction of the changes in Amazonian hydroclimate during HS1, integrated over the basin. We reconstructed surface water hydrography using stable oxygen isotopes (δ18O) and Mg/Ca-derived paleotemperatures from the planktonic foraminifera Globigerinoides ruber, as well as salinity changes based on stable hydrogen isotope (δD) of palmitic acid. We also analyzed branched and isoprenoid tetraether concentrations, and compared them to existing bulk sediment ln(Fe/Ca) data and vegetation reconstruction based on stable carbon isotopes from n-alkanes, in order to understand the relationship between continental precipitation, vegetation and sediment production. Our results indicate a two-phased HS1 (HS1a and HS1b). During HS1a (18–16.9 cal ka BP), a first sudden increase of sea surface temperatures (SST) in the western equatorial Atlantic correlated with the slowdown of the Atlantic Meridional Overturning Circulation (AMOC) and the associated southern hemisphere warming phase of the bipolar seesaw. This phase was also characterized by an increased delivery of terrestrial material. During HS1b (16.9–14.8 cal ka BP), a decrease in terrestrial input was, however, associated with a marked decline of seawater δ18O and palmitic acid δD. Both isotopic proxies independently indicate a drop in sea surface salinity (SSS). A number of records under the influence of the North Brazil Current, in contrast, indicate increases in SST and SSS resulting from a weakened AMOC during HS1. Our records thus suggest that the expected increase in SSS due to the AMOC slowdown was overridden by a two-phased positive precipitation anomaly in Amazonian hydroclimate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-10-29
    Description: There is increasing evidence that abrupt vegetation shifts and large-scale erosive phases occurred in Central Africa during the third millennium before present. Debate exists as to whether these events were caused by climate change and/or intensifying human activities related to the Bantu expansion. In this study, we report on a multi-proxy investigation of a sediment core (KZR-23) recovered from the Congo submarine canyon. Our aim was to reconstruct climate, erosion and vegetation patterns in the Congo Basin for the last 10,000yrs, with a particular emphasis on the late Holocene period. Samples of modern riverine suspended particulates were also analyzedto characterize sediment source geochemical signatures from across the Congo watershed. We find that a sudden increase of bulk sediment aluminium-to-potassium (Al/K) ratios and initial radiocarbon ages of bulk organic matter occurred after 2,200yrs ago, coincident with a pollen-inferred vegetation change suggesting forest retreat and development of savannas. Although hydrogen isotope compositions of plant waxes (δDwax) do not reveal a substantial hydroclimate shift during this period, neodymium isotopes and rare earth elements in detrital fractions indicate provenance changes for the sediment exported from the Congo Basin at that time, hence suggesting a reorganization of spatial rainfall patterns across Central Africa during this event. Taken together, these findings provide evidence for changing landscapes in Central Africa from about 2,200yrs ago, associated with synchronous events of vegetation changes and enhanced erosion of pre-aged and highly weathered soils. These events coincided remarkably well with the arrival of Iron Age communities into the rainforest, as inferred from comparison to regional archaeological syntheses. While the human impact on the environment remains difficult to quantify at the scale of the vast Congo Basin, we tentatively propose that strengthening of El Niño-Southern Oscillation (ENSO) variability at that time played a key role in triggering the observed environmental changes, and possibly acted as a driver for the eastward migration of Bantu-speaking peoples across Central Africa.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2016-09-14
    Description: Paleoenvironmental studies based on terrigenous biomarker proxies from sediment cores collected close to the mouth of large river systems rely on a proper understanding of the processes controlling origin, transport and deposition of biomarkers.Here, we contribute to the understanding of these processes by analyzing long-chain n-alkanes from the Amazon River system. We use the dD composition of long-chain n-alkanes from river bed sediments from the Amazon River and its major tributaries, as well as marine core-top samples collected off northeastern South America as tracers for different source areas. The d13C composition of the same compounds is used to differentiate between long-chain n-alkanes from modern forest vegetation and petrogenic organic matter. Our d13C results show depleted d13C values (-33 to -36‰) in most samples, indicating a modern forest source for most of the samples. Enriched values (-31 to -33‰) are only found in a few samples poor in organic carbon indicating minor contributions from a fossil petrogenic source. Long-chain n-alkane dD analyses show more depleted values for the western tributaries, the Madeira and Solimões Rivers (-152 to -168‰), while n-alkanes from the lowland tributaries, the Negro, Xingu and Tocantins Rivers (-142 to -154‰), yield more enriched values. The n-alkane dD values thus reflect the mean annual isotopic composition of precipitation, which is most deuterium-depleted in the western Amazon Basin and more enriched in the eastern sector of the basin. Samples from the Amazon estuary show a mixed long-chain n-alkane dD signal from both eastern lowland and western tributaries. Marine core-top samples underlying the Amazon freshwater plume yield dD values similar to those from the Amazon estuary, while core-top samples from outside the plume showed more enriched values. Although the variability in the river bed data precludes quantitative assessment of relative contributions, our results indicate that long-chain n-alkanes from the Amazon estuary and plume represent an integrated signal of different regions of the onshore basin. Our results also imply that n-alkanes are not extensively remineralized during transport and that the signal at the Amazon estuary and plume includes refractory compounds derived from the western sector of the Basin. These findings will aid in the interpretation of plant wax-based records of marine sediment cores collected from the adjacent ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2016-12-01
    Description: When using biomarkers such as n-alkanes as tools for paleo-environmental reconstructions, it is imperative to determine their specific sources for each setting. Towards that goal, we analysed a set of various potential organic matter (OM) sources such as aquatic and terrestrial plants, dust, and soils from Laguna Potrok Aike (LPA) and surrounding areas in Southern Patagonia. We determined chain length distributions and hydrogen (δD) and carbon (δ13C) isotopic compositions of n-alkanes of different OM sources in order to quantify their relative contributions to lake sediments. Our results reveal that mid-chain n-alkane, n-C23, is predominantly produced by submerged aquatic plants, whereas long-chain n-alkanes (n-C29 to n-C31) are derived from various terrestrial sources. We estimated their relative contributions to the sediment using two approaches, i.e. based on the n-alkane distributions and their δD and δ13C values. Both approaches result in similar estimates of aquatic and terrestrial contributions for mid- and long-chain n-alkanes to the sediment. 62-73% of the mid-chain n-C23 alkanes originate from aquatic sources while 66-77% of the long-chain n-alkanes originate from dust and 14-30% from terrestrial plants. Our study shows that mid-chain n-alkanes such as n-C23 alkane in LPA are derived mainly from aquatic macrophytes and thus have the potential to record changes in lake-water isotopic composition. In contrast, the n-C29 alkane reflects the isotopic signal of various terrestrial sources from Southern Patagonia.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-05-20
    Description: The Amazon River transports large amounts of terrestrial organic carbon (OCterr/ from the Andean and Amazon neotropical forests to the Atlantic Ocean. In order to compare the biogeochemical characteristics of OCterr in the fluvial sediments from the Amazon drainage basin and in the adjacent marine sediments, we analysed riverbed sediments from the Amazon mainstream and its main tributaries as well as marine surface sediments from the Amazon shelf and fan for total organic carbon (TOC) content, organic carbon isotopic composition (δ13CTOC/, and lignin phenol compositions. TOC and lignin content exhibit positive correlations with Al = Si ratios (indicative of the sediment grain size) implying that the grain size of sediment discharged by the Amazon River plays an important role in the preservation of TOC and leads to preferential preservation of lignin phenols in fine particles. Depleted δ13CTOC values (-26.1 to -29.9 ‰) in the main tributaries consistently correspond with the dominance of C3 vegetation. Ratios of syringyl to vanillyl (S = V) and cinnamyl to vanillyl (C = V) lignin phenols suggest that non-woody angiosperm tissues are the dominant source of lignin in the Amazon basin. Although the Amazon basin hosts a rich diversity of vascular plant types, distinct regional lignin compositions are not observed. In the marine sediments, the distribution of δ13CTOC and 38 (sum of eight lignin phenols in organic carbon (OC), expressed as mg/100 mg OC) values implies that OCterr discharged by the Amazon River is transported north-westward by the North Brazil Current and mostly deposited on the inner shelf. The lignin compositions in offshore sediments under the influence of the Amazon plume are consistent with the riverbed samples suggesting that processing of OCterr during offshore transport does not change the encoded source information. Therefore, the lignin compositions preserved in these offshore sediments can reliably reflect the vegetation in the Amazon River catchment. In sediments from the Amazon fan, low lignin content, relatively depleted δ13CTOC values and high (Ad = Al)V ratios indicating highly degraded lignin imply that a significant fraction of the deposited OCterr is derived from petrogenic (sourced from ancient rocks) sources.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...