GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    Publication Date: 2020-05-13
    Description: The data collection presented here is the data inventory of the VARved sediments DAtabase (VARDA) in version 1.1. VARDA is freely accessible and was created to assess outputs from climate models with high-resolution terrestrial palaeoclimatic proxies. All data were collected as raw data from freely available online sources, either from online data repositories (Pangaea, NOAA, and Neotoma) or data archives within the supplementary materials section of online publications. The current data collection consists of meta information and datasets from 95 lake archives. The data is stored in JSON and CSV format. All datasets are stored as individual files (JSON and CSV). Each dataset consists of samples for either i) chronologies; ii) radiocarbon data; iii) tephra layer; or iv) varve thickness data. Meta-information for each dataset is summarized in one csv and seven JSON files. Additional paleoclimate proxy data will be provided in forthcoming updates of VARDA. The data collection of VARDA Version 1.1 is provided as an archive (.tar.gz) with the following files/folders. Overview lists with categories, cores, countries, datasets, lakes and publications included in VARDA. Each item in the lists is cross-referenced with the other files via its $ref property which includes the corresponding list index or the dataset's UUID (from the VARDA database). The data points themselves are provided in the "records" folder and named with each dataset's UUID respectively. For more information on the data structure please read the "index.html" file included in the archive and available on the DOI landing page.
    Type: Other , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-04
    Description: Varved lake sediments provide long climatic records with high temporal resolution and low associated age uncertainty. Robust and detailed comparison of well-dated and annually laminated sediment records is crucial for reconstructing abrupt and regionally time-transgressive changes as well as validation of spatial and temporal trajectories of past climatic changes. The VARved sediments DAtabase (VARDA) presented here is the first data compilation for varve chronologies and associated palaeoclimatic proxy records. The current version 1.0 allows detailed comparison of published varve records from 95 lakes. VARDA is freely accessible and was created to assess outputs from climate models with high-resolution terrestrial palaeoclimatic proxies. VARDA additionally provides a technical environment that enables to explore the database of varved lake sediments using a connected data-model and can generate a state-of-the-art graphic representation of multi-site comparison. This allows to reassess existing chronologies and tephra events to synchronize and compare even distant varved lake records. Furthermore, the present version of VARDA permits to explore varve thickness data. In this paper, we report in detail on the data mining and compilation strategies for the identification of varved lakes and assimilation of high-resolution chronologies as well as the technical infrastructure of the database. Additional paleoclimate proxy data will be provided in forthcoming updates. The VARDA graph-database and user interface can be accessed online at https://varve.gfz-potsdam.de, all datasets of version 1.0 are available at http://doi.org/10.5880/GFZ.4.3.2019.003 (Ramisch et al., 2019).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-05-06
    Description: A potential human footprint on Western Central African rainforests before the Common Era has become the focus of an ongoing controversy. Between 3,000 y ago and 2,000 y ago, regional pollen sequences indicate a replacement of mature rainforests by a forest–savannah mosaic including pioneer trees. Although some studies suggested an anthropogenic influence on this forest fragmentation, current interpretations based on pollen data attribute the ‘‘rainforest crisis’’ to climate change toward a drier, more seasonal climate. A rigorous test of this hypothesis, however, requires climate proxies independent of vegetation changes. Here we resolve this controversy through a continuous 10,500-y record of both vegetation and hydrological changes from Lake Barombi in Southwest Cameroon based on changes in carbon and hydrogen isotope compositions of plant waxes. δ¹³C-inferred vegetation changes confirm a prominent and abrupt appearance of C4 plants in the Lake Barombi catchment, at 2,600 calendar years before AD 1950 (cal y BP), followed by an equally sudden return to rainforest vegetation at 2,020 cal y BP. δD values from the same plant wax compounds, however, show no simultaneous hydrological change. Based on the combination of these data with a comprehensive regional archaeological database we provide evidence that humans triggered the rainforest fragmentation 2,600 y ago. Our findings suggest that technological developments, including agricultural practices and iron metallurgy, possibly related to the large-scale Bantu expansion, significantly impacted the ecosystems before the Common Era.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-07-21
    Description: We revise the conceptual model of calcite varves and present, for the first time, a dual lake monitoring study in two alkaline lakes providing new insights into the seasonal sedimentation processes forming these varves. The study lakes, Tiefer See in NE Germany and Czechowskie in N Poland, have distinct morphology and bathymetry, and therefore, they are ideal to decipher local effects on seasonal deposition. The monitoring setup in both lakes is largely identical and includes instrumental observation of (i) meteorological parameters, (ii) chemical profiling of the lake water column including water sampling, and (iii) sediment trapping at both bi‐weekly and monthly intervals. We then compare our monitoring data with varve micro‐facies in the sediment record. One main finding is that calcite varves form complex laminae triplets rather than simple couplets as commonly thought. Sedimentation of varve sub‐layers in both lakes is largely dependent on the lake mixing dynamics and results from the same seasonality, commencing with diatom blooms in spring turning into a pulse of calcite precipitation in summer and terminating with a re‐suspension layer in autumn and winter, composed of calcite patches, plant fragments and benthic diatoms. Despite the common seasonal cycle, the share of each of these depositional phases in the total annual sediment yield is different between the lakes. In Lake Tiefer See calcite sedimentation has the highest yields, whereas in Lake Czechowskie, the so far underestimated re‐suspension sub‐layer dominates the sediment accumulation. Even in undisturbed varved sediments, re‐suspended material becomes integrated in the sediment fabric and makes up an important share of calcite varves. Thus, while the biogeochemical lake cycle defines the varves’ autochthonous components and micro‐facies, the physical setting plays an important role in determining the varve sub‐layers’ proportion.
    Description: Leibniz‐Gemeinschaft http://dx.doi.org/10.13039/501100001664
    Description: Narodowe Centrum Nauki http://dx.doi.org/10.13039/501100004281
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: ICLEA
    Keywords: 552.58 ; 554.3 ; Baltic lowlands ; Tiefer See ; Czechowskie ; calcite varves ; seasonal sedimentation
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kienel, Ulrike; Kirillin, Georgiy; Brademann, Brian; Plessen, Birgit; Lampe, Reinhard; Brauer, Achim (2016): Effects of spring warming and mixing duration on diatom deposition in deep Tiefer See, NE Germany. Journal of Paleolimnology, 57(1), 37-49, https://doi.org/10.1007/s10933-016-9925-z
    Publication Date: 2023-02-12
    Description: Monitoring during three meteorologically different spring seasons in 2012, 2013, and 2014 revealed that temperature increase in spring, which influences spring lake mixing duration, markedly affected nutrient availability and diatom deposition in a sediment trap close to the bottom of deep Tiefer See, NE Germany. Deposition of Stephanodiscus taxa and small Cyclotella taxa was much higher after late ice out and a deep, short lake mixing period in spring 2013, compared to that after gradual warming and lengthy lake mixing periods in spring 2012 and 2014, when only brief or marginal ice cover occurred. Availability of dissolved Si and P was 33 and 20 % higher, respectively, in 2013 compared to 2014. The observed relation between high (low) diatom deposition and short (lengthy) mixing duration in spring was applied to varved sediments deposited between AD 1924 and 2008. Low detrital Si content in trapped material and a sediment core enabled use of µXRF-counts of Si as a proxy for diatom silica. The spring mixing duration for 1951-2008 was derived from FLake-model calculations. The spring warming duration related to lake mixing was approximated from air temperatures for 1924-2008 using the dates when daily mean air temperature exceeded 5 °C (start) and 10 °C (end). Diatom silica deposition showed a significant (p 〈 0.0001) inverse linear relationship with the modeled spring mixing duration (R**2 = 0.36) and the spring warming duration (R**2 = 0.28). In both cases, the relationship is strengthened when data from the period of low diatom production (1987-2005) is excluded (R**2 = 0.59 and R**2 = 0.35). Part of this low diatom production is related to external nutrient supply that favored growth of cyanobacteria at the expense of diatoms. This approach shows that diatom Si deposition was strongly influenced by the availability of light and nutrients, related to the duration of lake mixing and warming in spring, during most of the studied period. The remaining unexplained variability, however, indicates that additional factors influence Si deposition. Further tests in other deep, temperate lakes are necessary to verify if this relation is a common feature and consequently, if diatom Si can be used as a proxy for spring mixing duration in such lakes.
    Keywords: Age; AGE; COMPCORE; Composite Core; Duration, number of days; Mecklenburg-West Pomerania, Germany; Micro X-ray fluorescence (µ-XRF); Silicon; Tiefer-See; Varve counting
    Type: Dataset
    Format: text/tab-separated-values, 325 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Martín-Puertas, Celia; Brauer, Achim; Dulski, Peter; Brademann, Brian (2012): Testing climate-proxy stationarity throughout the Holocene: an example from the varved sediments of Lake Meerfelder Maar (Germany). Quaternary Science Reviews, 58, 56-65, https://doi.org/10.1016/j.quascirev.2012.10.023
    Publication Date: 2023-03-16
    Description: Lake Meerfelder Maar (Germany) provides a varved record from the Last Glacial/Interglacial transition back to ca 1500 years BP. This study shows results for the Holocene sequence from new cores collected in 2009 based on varve counting, microfacies and micro-XRF analyses. The main goal of combining those analyses is to provide a new approach for interpreting long-term palaeolimnological proxy data and testing the climate-proxy stationarity throughout the current interglacial period. Varve counting provides a new independent Holocene chronology (MFM2012) with an estimated counting error of 1-0.5% and supported by 14C dating. Varve structure and thickness and geochemical composition of the varves give information about the main environmental processes that affect the lake and its catchment as well as the possible climate variability behind. Varves are couplets of i) a spring/summer laminae composed of monospecific diatom blooms and ii) an autumn/winter sub-layer made of minerogenic material and re-worked sediments. Thickness of the varves and sub-layers reflect lake variability and allow seasons to be distinguished as well as seasonal proxies. Changes in the winter minerogenic influx into the lake are reflected by Ti intensities and the Si/Ti ratio as a indicator for diatom concentration, which can be used as a proxy for water circulation during the early spring. Long-term variability of geochemical composition shows a reduction of the detrital material input (Ti) at 5,000 varve yrs BP and a visible sensitivity to water mixing (Si/Ti) during the Late Holocene. Variations of Ti intensities during the early and mid-Holocene do not show a clear relationship with climate. In contrast, higher values of the Si/Ti ratio together with thicker varves have been interpreted as wind-stress phases, which coincide with centennial variability of European cold/wet episodes during the Late Holocene. Our findings show that a long-term change in the lake and/or variability of the climate system can influence proxy sensitivity of a lacustrine record.
    Keywords: Helmholtz-Verbund Regionale Klimaänderungen = Helmholtz Climate Initiative (Regional Climate Change); REKLIM
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-06-27
    Keywords: DEPTH, sediment/rock; Event label; Germany; Meerfelder Maar; Meerfelder Maar, Germany; MFM09A/D; MFM6; PCUWI; Piston corer, UWITEC; UPC; Usinger Piston Corer; Varve age
    Type: Dataset
    Format: text/tab-separated-values, 478 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-06-27
    Keywords: AGE; Meerfelder Maar; Meerfelder Maar, Germany; MFM09A/D; PCUWI; Piston corer, UWITEC; Varve age; Varve thickness; Varve thickness, summer sub-layer; Varve thickness, winter sub-layer
    Type: Dataset
    Format: text/tab-separated-values, 26443 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-06-27
    Keywords: AGE; Meerfelder Maar; Meerfelder Maar, Germany; MFM09A/D; PCUWI; Piston corer, UWITEC; Silicon; Silicon/Titanium ratio; Titanium; Varve age; X-ray fluorescence (XRF)
    Type: Dataset
    Format: text/tab-separated-values, 135237 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Garcin, Yannick; Deschamps, Pierre; Ménot, Guillemette; de Saulieu, Geoffroy; Schefuß, Enno; Sebag, David; Dupont, Lydie M; Oslisly, Richard; Brademann, Brian; Mbusnum, Kevin G; Onana, Jean-Michel; Ako, Andrew A; Epp, Laura Saskia; Tjallingii, Rik; Strecker, Manfred R; Brauer, Achim; Sachse, Dirk (2018): Early anthropogenic impact on Western Central African rainforests 2,600 y ago. Proceedings of the National Academy of Sciences, 115(13), 3261-3266, https://doi.org/10.1073/pnas.1715336115
    Publication Date: 2023-06-21
    Description: A potential human footprint on Western Central African rainforests before the Common Era has become the focus of an ongoing controversy. Between 3,000 y ago and 2,000 y ago, regional pollen sequences indicate a replacement of mature rainforests by a forest-savannah mosaic including pioneer trees. Although some studies suggested an anthropogenic influence on this forest fragmentation, current interpretations based on pollen data attribute the ''rainforest crisis'' to climate change toward a drier, more seasonal climate. A rigorous test of this hypothesis, however, requires climate proxies independent of vegetation changes. Here we resolve this controversy through a continuous 10,500-y record of both vegetation and hydrological changes from Lake Barombi in Southwest Cameroon based on changes in carbon and hydrogen isotope compositions of plant waxes. d13C-inferred vegetation changes confirm a prominent and abrupt appearance of C4 plants in the Lake Barombi catchment, at 2,600 calendar years before AD 1950 (cal y BP), followed by an equally sudden return to rainforest vegetation at 2,020 cal y BP. dD values from the same plant wax compounds, however, show no simultaneous hydrological change. Based on the combination of these data with a comprehensive regional archaeological database we provide evidence that humans triggered the rainforest fragmentation 2,600 y ago. Our findings suggest that technological developments, including agricultural practices and iron metallurgy, possibly related to the large-scale Bantu expansion, significantly impacted the ecosystems before the Common Era.
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...